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PART ONE

SOLUTION PROCEDURE AND NUMERICAL RESULTS

I. INTRODUCTION

The purpose of the present report is to develop an H-field solution

which can be used alone or used in conjunction with the E-field solution

in [1] to obtain a combined field solution which is hopefully more accurate

than the one in [2]. Here, H-field solution means a solution to the mag--

netic field integral equation for a perfectly conducting body immersed in

an incident electric field. Similarly, E-field solution means a solution

to the electric field integral equation. In [(] and in the present report,

solution is by the method of moments with a Fourier series in p. For com-

patibility, the expansion functions used in the present report mrust 12 the

same as those in [i]. In [1] and in the present report, the t dependence

of the expansion functions is subsectional. Pulses are used for the ý com-

ponent of the unknown electric current induced on the surface S of the body

of revolution. Triangles divided by the cylindrical coordinate radius are

used for the t component. Here, t and 4 are orthogonal coordinates on S, t

being the arc length along the generating curve of S and 4 the azimuthal

angle.

Computations indicate that the E-field solution of [1] is more

accurate than the E-field solution of [2] and that the present H-field solu-

tion is nearly as accurate as the H-field solution of [2]. Hence, the com-

bined field solution obtained by putting together the present H-field solu-

tion and the E-field solution of [1] should compare favorably with the

combined field solution of [2].

Early work on H-field solution. .3t'1'nrarized in [3]. Two recent

H-field solutions are presented in [4] and [2]. The solution in [4] uses

pulse expansion functions for both t and 4 components of the unknown elec-

tric current induced on S. H-field formulations are basic ingredients in

solutions to problems of scattering by a dielectric body of revolution [5],

[6], [7] and a dielectrically clad conducting body of revolution [8]. The

expansion functions in [5] and [8] are triangles divided by the cylindrical
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coordinate radius for both components of the current. The H-field formu-

lation of [21 is used in [61 and [9]. The expansion functions in [7] are

pulses for the 4 component of current and shifted pulses divided by the

cylindrical coordinate radius for the t component.

The magnetic field integral equation for a perfectly conducting

body of revolution illuminated by an incident magnetic field H is

-n x = n x H just inside S (1)

where S is the surface of the body of revolution and n is the unit vector

which is normal to S and which points outward from S. In (1), J is the

electric current induced on S and _5 (J) is the magnetic field due to J

radiating in the absence of the body of revolution. It is assumed that

the medium outside S is linear, isotropic, and homogeneous. "Outside S"

means outside the body of revolution and "inside S" means inside it.
"Absence of the body of revolution" means that the body of revolution has

been removed and that the ensuing void has been filled with the outside

medium. The incident magnetic field Hi is the field which would exist in

the absence of the body of revolution.

Equation (1) states that the tangential components of the total
s imagnetic field (H + H ) vanish just inside S. Consequently, (1) is

valid only if S is closed. By contrast, the E-field integral equation

(40) of [2] is valid for both open and closed stirfaces of revolution.

II, METHOD OF MOMENTS SOLUTION

Equation (1) is solved by the method of moments. The moments

solution to (1) is approached by writing

iK ( it jt + J?' (2)

nj -nj nj --nj
nntwhere J and J are expansion functions defined by
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jt T (tn) •' = 0, +1, :+2,..'
J 1,2... P-2

ulj~ 0, +1, +2,...

i e (3b)-nJj 1 j , 2, . .P-1

an wer; nJ and InJ are unknown constants to be determined. The

subscript j which runs from 1 to either (P-2) or (P-i) in (3) is not to

be confused with the J which appears in the argument of the exponential

in (3). The latter j is v7-. The variables t and ý are orthogonal

curvilinear coordinates on S. Specifically, t is the arc length along

the generating curve of S and ý is the azimutaal angle. The generating

curve of S is the plane curve which, when rotated about the z axis,

generates S. In (3), ut and u are unit vectors in the t and 4 directions,

respectively. These directions are chosen so that

_ (4)

The function T (t) is the triangle function defined by

(t ti)/ , t j< t< t l

Tj(t) = (tj+2-t)/+ , t < t < tj+2  (5)

0 , otherwise

and P (t) is the pulse function defined by

i -

P (t) (6)

0 , otherwise

Here, t§, t 2 , .. t p are consecutive but not necessarily equally spaced
points on the generating curve of S. t is the value of t at the be-

1
ginning of the generating curve and t p is the value of t at the end.

Henceforth, the generating curve is assumed to be a series of straight

line segments joining the points tI, t 2 ,... tp. In (5),2) PI



j =t -t (7)
j j+l j

In (3), p is the distance of the point t on the generating curve from

the z axis and p is the value of p at t t where

tj (

2 j j+l

It is assumed that all the pi's are positive.

The moments solution to (1) is obtained by substituting (2) into

(1), integrating over S the dot product of (1) with each member of a

set of testing functions, and solving the resulting matrix equation for
I and I . There are two kinds of testing functions, W and-n
nj nj -ni '-ni

defined by
ni 0, +i, +2,...

t Ti (t) -j (9a)
--hi 't p e

1 1,2,... P-2

n 0, +1, +2,...W•__Pi(t) -n - -

-• i e (9b)
= 1,2,... P-1

The matrix equation for Itand I decomposes into

nJ njd

rtt 4 t-+iL
yn n n nL I n =0, +1, +2,... (10)

wYnt n En L n]
the superscripted I's are column vectors and the superscripted Y 's
weetesprcitdIn n

are submatrices. The Jth element of I is I and the jth element of
is I~ . The ith elements of •I and I are given by

n n

10 1.. is . .The _eleme
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0 2 7r

Itt f dt Ti(t) d d( " H1)e Jn (lba)ni --

0

The second subscript on I in (11) denotes the ith element. The

superscript i on I in (11) is the same as that in (10). This super-script indicates dependence on the incident magnetic field Hi.

For a particular value of n in (10), the matrix of the super-

scripted Y 's on the left-hand side of (10) is called the moment
n

matrix for that value of n. The ijth elements of the superscripted

Y 's are given by
n

(ytt)+2 Tit T(t) k l2t+

ti t ti+ j+ +

n ij
ti t

[((p'-P)cos V' (z'-z)sin v') s - G( )Cos v sI (12a)

•3
ti~I2 t1+

(Yt) Pi dt Pi(t) f dt' T .(t')('sin v Cos V'

i. t t

[(-pcsv- p-sin v' cos - os vs sin v')G (12b)

1i+2 tJ+l
('Ynt)J=j~j dt Ti(t) _dt' O' P (t')(z'-z)G3 (12c)

tij

tl+l k3 i•l+1

"( Tn f i pj P, (t)Pj (t)dt + -lj dt pP (t) Jdt'p'Pj(t'

t ii ti t j

[((p'-p)cos v -(z'-z)sin v)G2 + GIP' Cos v] (12d)

2 1,



6

The derivation of (12) is not included here because it is similar to

that of (20)-(23) of [2]. Actually, (12) was obtained by replacing

Sf(t) by T (t) in (20) and (22) and by i (t) in (21) and (23)

and by replacing f (t') by 1L t ) in (20) and (21) and by )P .t1 Pi
in (22) and (23). The equations (20)-(23) referred to in the previous

V.i sentence are in [2].

In (12), k is the propagation constant in the medium outside S.

Also, v is the angle between the tangent to the generating curve and

the z axis. v is positive if the generating curve is moving away from

the z axis. Otherwise, v < 0. In (12), p, z, and v are evaluated at

the point t on the generating curve and p', z', and v' are the values

of p, z, and v at the point t'. The subscripted G's in (12) are given

by
_<;! ~Tr.

"G= 2 fG sin2 (4d2) cos(ný)dP (13a)

0
Tr

J 2 f G cos cos(ný)do (13b)

7T

"G G sin 0 sin(no)d# (13c)

0

where
G• 1 + Jk e-JkR (4

3 3
k R

where A

V( R p)2 + (z+-z)2 4pp'si(n2  ) (15)

The regions of integration in (12a)-(12c) overlap. To avoid

integrating more than once over the same region, we account for the

contributions in (12a)-(12c) by regions of integration rather than by
matrix elements. If A is the region which t < t < t then A

q q A~lq

contributes

Di, l
&5
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tLn

t
q

to the single integral with respect to t in (.12a). Because the

domains of the triangle functions are limited, (16) is nonzero

only for

i= q-1, q

i# 0 (17a)

i P-1

j q-l, q

.1.#
0 (17b)

vj # P-l

The dot on the left-hand side of (16) indicates that (16) is not all

of (12a) but only the contribution due to A
q

If A is the region for which
pq

t< t <tpt P+l

t < t' < t
q_ q+I

then the contributions to (12a)-(12c) due to A are given by
pq

t t

dttt 3 t ,(t) dt (t') [(.(p'-p)cos v' - (z'-z)sin v')G
(Yn )j k 2

t t
p q

- G- pcos v'} (18a)

* ,t PJ J'p dt t) dt' TjCt')(p! sin v cos v'

t t
pq

- p sin v' cos v - (z'-z)sin v sin v')G3 (18b)
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t t

(jt4d) T ( dt) pt q 3t'('-) (18c)
niq q -

t t
p q

where

i p-1, p

i 0 (19a)

i i#P-i

and m
j q-1, q

# 0 (19b)

The asterisks on the left-hand sides of (18a)-(18c) indicate contri-

butions due to Ap. For instance, (18a) is not all of (12a) but only
pq

the contribution due to A Equation (12d) is suitable for calcula-Pq

tion as is because it has no overlapping intervals. However, to ob-

tain a notation consistent with that in (18a)-(18c), we replace ij by

pq in (12d). The result is

tp+l t1+1

(Yo = " P 2 (t)dt + k dtpP (t) +dtiPtP (t')
n pq P2 pq _ pp Pp q t p q

p tp tp tq

[((P'-p)cos v- (z'-z)sin v)G + GlP Cos VI (18d)2 1

where

6•pq (20)

"The fact that the pulses (6) do not overlap was used to obtain the

6 term in (18d)..pq
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Each integral with respect to t in (18) is approximated by

sampling the pertine-.,t integrand at t = t and multiplying by A
p p

Next, the definitions (5) and (6) of the triangle and pulse functions

are substituted into (18). Because the portion of the generating

curve for t < t' < tI is assumed to be a straight line, v' is con-

stant there so that

Pt  Pq + (tW - t )sin v

t < t' < t (21)q -~
z= Zq + (tW - t )COs Vqq'q q"

where z is the value of z' at t' t Equations (21) are also sub-
q q

stituted into (18). As a result, (18) becomes

t
k A + 2(t'-t)

(Yt q (1 +()jA r/, P )cos v -(z -z)snvG
r, ij 4 A q ~ qAL~ i~~ 2

q p q p
q

- GIPp cos Vqldt' (22a)

J (1 + (-i)q-j 2(t'-tq)npj. 2A ) (pqsin v pO csv q p snvq csvP
tq q
q

- (zq-Zp)sin vpsin Vq)G 3dt' (22b)

j3 +l (t'-t )sin v
= (1 -z + (t'-t )Cos vq)G dtt  (22c)

(•t•iq 2 ( p q p q q 3
q

q

rA P (t'-t )sin v
(Y p) q= + k3A I (i + q -p )Cos v SV z -'z )sin V

n pq P pq p P q p p p p
q qt .

q

(t'-t )sin v

+ (t'-t )(sin v cos v - cos v sin v ))G + GPq(l+ ) ]dt'q q p q p 2 1qP p

d).

\V
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The ranges of values of i and j in (22) are given by (19). Because P

is linear in t, the process of sampling the integrand at t t and

multiplying by A gave the exact value of the first integral in (18d). I
The integral in (16) can be approximated either by sampling

the integrand at t = t and multiplying by A or by applying Gaussian
q q

quaý ature. Gaussian quadrature was chosen because it gave more

5 accurate values of electric currents induced on the sphere and cone-

sphere examples in Section V. Thanks to (5) and (21), the Gaussian

quadrature formula for the integral in (16) becomes

(n) (n
n t92ff nA A )
£t (1 918t (23a)

n q-l,q-i 8 t=l

(n) (n) (n)
nt t t ttA ntqAq (l- x )(i +x9  )

(Itt) = t) q(23b)
• ttq,q n q-l,q 8

(n (n
rA t A ( (I x

(itt) q (23c)
n q,q 8 Z•

(nt)

where Pq + sin v (23d)
z q 2 q

(nt (nt

The abscissas x and weights An in (23) are given in Appendix A

of [10] for several values of nt.

Equations (22) can be rewritten as
$j~~i~i •tn k3A A V)2 q

(Y )... 8 [ -p P)Cos v - (z q-z p)sin v )G G p Cos vn':,o,(tij 8pqpq2 -GI lpp o

k A A
(_)+ P8 [ qP p)cos vq- (z q-Zp )sin v q)G 2 2 -G1 2 p COs vq] (24a)

(Yt) pJ= 4 (p sin Vq - ppsin Vq:OSVp cos v

--(z -Z )sin v sin )(G + (-l) 32) (24b)
p P 31. 3I

. t2A
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*43 kA A sin v Acosv A sin v•:• •tn ) lq 4 [(q-Z +p GG2 M0
(Y) ( -' (G3 + 2 32 + q 2p 33
n iq 4 q p (31+ 2p 32 2 (3+2 ----

q q

(24c)
@3

3,A kAA A sin v
S(Y¢¢) = •S + -2 [ ((pq-0p)Cos v -(z -z )sin vp)(G2+

n pq p pq 2 q p q p p q
pq

A A sir. •v
+-A(sin vcO V - cos vqsin vp)(G2 +-. 'q ) +

2 q pq p 22 2p 23

A sin v A sin v
•:'•-+ p Cos Vp(Gl + g qq GI + "C-~)2q G3] (24d)

qPq 12 2p 13)(4d

where

-1 ~m'1,2,3
G = ( -t)dt (25)

qq
Sm a q r -_ 1,2,3

q

Here,

S(U) = 2 G(u,4)sin (¢/2) cos .(ný)dý (26a)

0

iT

S2 (u) G(u,O)cos r cos (ný)d4 (26b)

if

G3 (u) = G(u,ý)sin ¢ sino (ný)dý (26c)

where

(u, ) + JkR(u,¢) e -kR(u,)7)
k 3R" (u, )

whe,..e

M~UM4 +- (z t -Z )2 4p p' sin /2 ) (28)

where
.,- p + u( in v (29a)

q q

k q qInn-
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III. NUMERICAL EVALUATION OF THE INTEGRALS G

The integrals G of (25) are now evaluated by means of either pure
ma

Gaussian quadrature or Gaussian quadrature fortified by the method of

elimination of the singularity of the integrand. The proximity of the

singularity of G(u,4) of (26) to the region of integration falls into

one of four different cases defined in this section.

If

p q Case 1

cA < d Pure quadrature (30)

then pure Gaussian quadrature is used to evaluate the integrals in (25)

and (26). In (30), c and c, are constants for which the ,.alues

2.

(31)

c 0.l

are suggested. Also in (30),
* i I1

d <-A
- 2 q

d =(32)
0

1 i )2 *2

ot* - q)+ (d) > Aq

where

to =(pq-pp)Sin Vq + (Zq-Zp)COS Vq (33) ,-

q p

d (p-p p)Cos v - (z -Z )sinv (34)
qp q q-p q

The quantity d defined by (32) is the minimum value of R(u,4) for the

ranges lul < Aq and 0T<_ < Tr of values of u and 4) in (26). Equations

(30)-(34) were taken from pages 24 and 25 of [1].

I i,\ . ... ..
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The Gaussian quadrature formulas for the integrals in (25) and

(26) are

"t (n) 'r a a-i (n) m=i,2,3
G f A ) 1 t) { (35)
maAI La= 1,2,3

n4n (n¢)

1 G(u,4,)sin 2 i

G At (•n4 )o (2cos (n )(
I''• G2~(u) = 1ý AI Gt,£cs¢£cs( ) (36b)

2.

"n)  (nh

G3 (u) =7 I At G(u, sAn sin (ný.) (36c)

where G(u,4)) is given by (27)-(29) with 4 replaced by 4£. Here,

?.• (n )

(x + 1) (31)

(nt)n (nt) (no)

The abscissas x., and x and weights Az,. and A in (35) and

(36) are given in Appendix A of [10] for several values of nt and n4 .

If (30) is not true, then the singularity due to the kernel (27)

is eliminated [11i before applying Gaussian quadrature to the integrals

in (25) and (26). The singularity analysis presented here is more gen-

eral than that in [7] because the one in [7] was carried out only for

p = q. Substitution of

2 2-jkR k2Re, 1-Jk
•" ' 2

into (27) reveals that, near P. 0, (27) behaves like a function Gs

given by

G 1 + 1 (38)
3 3 2kR
k R

Three different methods of eliminating the singularity are used.

If
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p q Case 2

2 c A > d Method I (39)
2 t q o i:

c p <ýd-q- o

then method 1 is used. In method 1, the orders of integration in (25)

are interchanged to obtain

4IT

G =2 f (ý)sin2(/2)cos(n4)) (40a)

0

SG H (ý)si cos(n4)d4) 1,2,3 (40b)
0

G ~ H 4ý)s sin(n4))d4)G'q 4) (41c)

where•- ~t-

• ~H (W t t-t G(t'-t ,•)dt' (41)
r•:q - q q

Sq

[.I method 1,the singulariq (41) is iIn , singular part of the integrand in (41) is integrated

analytically, the remaining part is integrated by means of Gaussian

quadrature, and then Guassian quadrature is applied to the integrations

with respect to 4 in (40). The singular part of a singular integrand

is a function which behaves like the integrand near its singularity.

Evidently, the singular part is not unique.

Guided by (38) in our choice of the singular part of the inte-

grand in (41), we write

t

2() +1-t _(G(t'-t ,)--2Rt-

t q q
q (42)

:A
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where

! I= = (•)aq t-(t'-tq)-I I.3.('-q•e + 2 1 tlt,•)dt' (43)

tf- q (t'-t ,4')l-. M
q q

Application of Gaussian quadrature to the first integral in (42) gives

n
t (nm) (n)a-1 (nt)1

.H L A2 , ( ' (G(- Aqxz, ,0)

2'k R(ý1 A xR , )iq
1 1+ (44)

i (n) t a
2kR(½ AqXt ,4))

Equation (43) can be rewritten as

o 2 q

I(2c( J 0 3 2 2 /32 + 2 22(45)
qcx q 1 k (w,+d 2k(w +d)

o 2q

where

t 2
to (Pq-P )sin vq + (z q-Z p)Cos vq + 2ppsin vq sin (/2) (46a)

2 2 2
d =r - t (46b)Spq o

rpq (pp)2 + (zzp)2 + 4ppqsin2(0/2) (46c)
pq p q p pq

Application of formulas 200.01., 200.03., and sequel in [121 to (45)

gives

2 w + I- log(w+r) (47a)
1 Aq k 2 22

I' .

':• li
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12 2 (47b)
2 (2 ) A 1

0qAS- __iA
2o 2q t +-

13 = 3 kw - ) + (1 4) log ] (w+r)
q

4t I 2t 2S4to12 2t2
A o 0) (47c)

A A~E~'q q

where

rr w +d (47d)

If • 0 in (42), then (30) guarantees that the variable t'

of integration in (42) passes close to the singularity of G(t'-tq,4).
q

In this case, (44) and (47) are necessary. However, as 0 moves

toward r, r may become so large that the variable t' in (42) neverii pq

comes close to the singularity of G(t'-t ,q). In this case, (44)

and (47) are no longer necessary. Their calculation is always time

consuming regardless of the value of r . Even worse, the calculationPq

of (44) and (47) is subject to excessive roundoff error whenever r is

appreciably larger than A . It was decided to restrict use of (44)
q

and (47) to

- < cA + - A (48)

For larger values of r recourse is to the Gaussian quadrature

formula
t (n (n() (49

H = AZ, (x, ) G(- AqX (49)
I £'=I

The term A on the right-hand side of (48) is necessary to assure
2 qthat the distance R(t'-t ,•) used in (41) is at least as large as

c A for all values of t' in (41) before (49) is invoked. This dis-
2 t q
tance enters (41) through (27).

11 ......
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In method 1, Ga of (40) is approximated by

n (n

G = At H()sin 2 1 cos(n) (50a)

n
iT (n¢)

G 2 = At H (G )cos 4) cos(n4)) 1,2,3 (50b)

'k(n)•'• .ilG~a=-2" A£ H (ý,)sin ¢2sin(nO£ (50c)

where H is given by either (44) of (49).

If
p q case 3

c P > d Method 2

then method 2 is used to eliminate the singularity due to the kernel (27).

In method 2, the singular parts of the integrands in (26) are integrated

analytically, the remaining parts are integrated by means of Gaussian

quadrature, and then (25) is approximated by the Gaussian quadrature

formula (35).

Integration of (38) with respect to 4 is difficult. With a view

toward replacement of (38) by a function which behaves like (38) near

S= 0 but is easier to integrate, we rewrite (28) as

R(u,4) = a/1-b (52)

where

a /(p,_pp)2 + (z,_zp) 2 + P Pp,)2 (53a)
p pt

P' (ý2 sin2(€/2)) (53b)a2
a

where p' and z' are given by (29). Near 4) 0,

-jX
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0. < b S ¢2/12 (54)

The left-hand side of (54) is a consequence of the fact that lxI Isin xl

for any value of x. The right-hand side of (54) was obtained by setting

2= Ya2 PP in (53b). Substitution of (52) into (38) and subsequent expan-
sion of (38) in powers of b reveals that, near 0 0, G behaves like the

function Gss given by

k-- + '- + (55)
3 3 2ka 3 5Jka 8k a

Guided by (55) in our choice of the singular parts of the inte-

grands in (26), we approach method 2 by rewriting (26) as

7T *1T
• • 2

Gl(u) = 2 J (G(uc)sin2 (/2)cos(n4) - M2 + J @2d02 (56a)

0 4k a 0k

r2 2 p pq)
G2(u) (G(u,4)cos 4 cos(n4) +1 -)
2 J k3a3  A 3ka a + 8 35

+- ++ 1 (dý (56b)

0 2ka A k 3a50

Tr22(56c2G3(u) = (G(u')sin sin(n4) )d k d) (56c)

0k a )d) 0 k

There are two integrals on the right-hand side of each of equations

(56a), (56b), and (56c). If Gaussian quadrature is applied to the first

integral and if the second integral is evaluated analytically by using

formulas 200.01., 200.03., and sequel in [12], then (56) becomes

S(n 2
Il(U) (U 7 A• (G(u,4,)sin2  ý, 4)cos(n4)) -

£=i ~4k a

1 w
2k 3 (pp,)31 2 [r - log(w+r)] (57a)

p

j . ,>
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nl4  2 24
1(n (n +l) Pp, , 4

=Gu) A (G(u,ý )Cos -os(n +
2' 2 3os3 2k, 3 3 3 5Y k a£ 2 2k az 8k

3 2
+ w + log(w4-r) -+ (n +Q) [F2- log (w4-t)3 ITr 2 k2k3 (p p)3/2r 2k(p P')1/2 2k3 (rp,)3) r

p p (p )!

2
1_ [w(3+4w2) - log(w+r)] (57b)8k 3 (pP') 3/2 3r 3

fl (n ) 2

G3(u)-~ 7A, (G(u,ý )sin 4~sin(n#.) 3 ~-)- ~ 3 I -log (w4-r)]k a* k (ppp)
£ p

(570)

where a is the right-hand side of (53a) evaluated at 0 - In (57),

lTr P P'
W w=(58a)

2pt  2
(PI-P + (z -Z)

p p
,•r =l+ w (58b)

• Equation (57) is used only if the minimum valuE V(pj_ )(z'_

of R(u,ý) with respect to 4 in (26) satisfies

2 2( P + (ZC ~Pq (59)

The distance R(up) enters (26) through (27). If (59) is not true, then

G (u) is approximated by the pure Gaussian quadrature formulas (36).
m

In method 2, G is obtained by substituting either (57) or (36) into (35).
ma

If
• Case 4

p= q (60)
Method 3

then method 3 is used to obtain G . Since p=q, only Gll, GI2, G G,
ma il1'13, 32'

and G33 are needed in order to calculate (24). From (40) and (41), these

subscripted G's are given by

. I ..: "
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2 ql
G 2(2-)' jd4 du uo-IG(u,4)sin (4/2)cos (n"), ax 1,2,3 (61a)

q 0 2q

G du ua- G(u,4)sin 4 sin(n4), a = 2,3 (61b)

q2

where G(u,v) is given by (27) with-

2 + 2 V )Si 2

R(u q+u sin (/2) (62)

Substitution of (38) for G(u,4) in (61) reveals that, in (61), the only

integrand which is not bounded in the vicinity of u =) 0 is the inte-

grand for a = I in (61a). In method 3, the singular part of this inte-

grand is integrated analytically with respect to both u and 4, the re-

maining part is integrated by means of method 1, and then method 1 is

applied directly to the integrals (40) and (41) for GI 2 , G1 3 , G3 2 , and

G3 3 .

Equation (61a) for G is rewritten as
11

G 11 1 a + I+b (63)

where

I J de du(G(u,4))sin2 (4/2)cos(n4) ) (64)V a A- k3(u2+P 2123/2

"q 0  -q

1
IT A 2

I 3 2 2 23/2
2q k( + P q)

Pqq

It is evident from (38) and (62) that the integrand in (64) is bounded.

Application of formulas 200.03. and 200.01. of [12] to (65) gives

'j1
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b 3o (66)

kp L q q
q

A I

Integration with respect to u of the second term ii (64) by

means of formula 200.03. of [121 gives

IT i

a 2 2 HI ()sin2 (/2)cos(n4)d# - - (67)
a f 1 33kq 2(.)

y ~q

where HI(•) is given by (41). The first integral in (67) is the right-

hand side of (40a) for a = 1. Application of method 1 to this integral

and to those in (40) and (41) for GI2 , GI3 , G32 , and G3 3 , evaluat.ion of

the second integral with respect to ý in (67) by means of Gaussian quad-

rature, and use of (63) and (66) give

(nt n (n•)

n• n

I?(n2 1 __f A___k

G1 = A£ H H(h)sin 2 )cos(n )(0

q

2p~ IT 2p,7

1+ 3 A) (68a)

n (n,)
G IT ? A£ H (4 )sin 2j 1 cos(n4) (68b)

c-2,3
n

Gc At HaQ~k)sin *,sin(nc9)(6c

where H (@) is given by either (44) or (49) depending on whether

(48) is true.

Equations (68b) and (68c) and the first sum in (68a) were taken

directly from (50). The rest of the right-hand side of (68a) is due to

L I1

i-77
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the manipulations (63)-(67). The numerical integration with respect

to ý required to obtain (68a) is of the bounded integrand in (64)

rather than of the unbuanded integrand in (40a). Hence, the portion
of (63a) in excess of (50a) fortifies the numerical integration with l

respect to ý. Having been obtained through analytical integration

with respect to u, this portion of (68a) does not affect the accuracy

of the numerical integration with respect to u.

IV. EVALUATION OF THE PLANE WAVE EXCITATION VECTOR

The column vector which appears on the right-hand side of (10)

and whose elements are given by (11) is called the excitation vector.

In this section, the elements (11) are evaluated for the case in which
i

H is the magnetic field of either a 6 polarized or a 4 polarized inci-

dent plane wave.

Consider a 0 polarized incident plane wave defined by

•" ~ ~-jk kt r -

E' tkl e (69a)

ie -jk~ r
H - k e (69b)

aad also a 4 polarized incident plane wave defined by

it
_ kn e (70a)

-jk
H k e (70b)

where k is the propagation constant, Tn is the intrinsic impedance of

space, r is the radius vector from the origin, and

Fir", kt - u sin 0 - u Cos e:` -x t -z t

ucos 0 u sin 0t (71)

utM--u--y
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where u , u and u are unit vectors in the x, y, and z directions,

respectively. In (71), the letter t stands for transmitter. The

origin is on the axis of the body of revolution and is in the vicinity

of the body of revolution although not necessarily centered Inside it.

In (69) and (70), the E's are electric fiAlds and the H's are magnetic

fields.

Each of the incident plane waves (69) and (70) comes from the

direction for which 6 = e and , 0. Here, 0 and ý are standard
t

spherical coordinates. 0 is measured from the positive z axis. ý is

the angle that the projection onto the xy plane makes with the positivet t ,1
x axis. At the aspect (6 = t 0), the unit vectors 4 and 4 re-

duce to the unit vectors in the 0 and i directions, respectively. Be-
cause of the circular symmetry of the body of revolution, no generality

is lost by confining k to the xz plane. If k were rotated through an

angle t from P =0 to • = ct the response would also rotate through

the same angle t
t

iIn view of (70a), substitution of (69b) for H in (11) gives

I- :2i,.

iti = -l i -jn4 (72)

The additional superscript 0 on the left-hand sides of (72) indicates
the 0 polarized incident plane wave. In view of (69a), substitution
of (70b) for-H in (11) gives 0

2Tr

i* -_ - dtpP( d# (u .Ei#)e-Jin (73b)

ni TIpi t J (Ei

0
The~~~~~ ~ ~ ~ ~ adiioa suesrp ntelf-an ie f(2 niae
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The third superscript on the left-hand sides of (73) indicates the

polarized incident plane wave.

Substitution of (9) for the W's and (69a) for Ei in (7) and (8)

of [1] reveals that the elements Vti and V 0 considered in Section IV
ni ni

of [13 are given by

2ir

7 Vto dt Td ((Ei#)e-jn_ (74a)

0

17 rtp t) ( e -j n (74b)ni T)Pi j f uE~,P f0

Substitution of (9) for the W's and (70a) for E in (7) and (8) of [1]

gives

2'r

Vi = f dt T i(t) d4 ( " E i )in)e (75b)

0

"Comparison of (72) with (75) shows that if T i(t) and (PP i(t))/pi were

interchanged in (75), then

Iit= VO (76a)
ni ni

ni = Viný (76b)
ni ni

Comparison of (73) with (74) shows that if Ti(t) and (pPi(t))/Pi were

interchanged in (74), then

it V (76c)
ni ni

=ii - to (76d)
ni ni

Now, Ti(t) is responsible for both the asterisk on the left-hand sides

of (120) and (122) of [I] and the factor

44.

. . . . .. . . . . . . . . . . . . . . . ..,I ...-

-m•&'• ".".-'..• • • ... i:$ '.:,•, .. •. .. " " " •• - . .. '-• ' . . ...2' .' ', ." '' ,:.'.:" . , • .... . •'" " " ."" • i. .. . .-....
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i (-I)p-i 2( )

St-tp
•ii: 2(1 + A )

• P

-•-• on the right-hand sides of (120) and (122) of [I]. Also, (0Pi(t))/pi

._• appears as the factor
(t-tp) sin v• 1 + . . ... P

$-•!. Pp

Sin (121) and (123) of [I]. Hence,

-•!' •it@ jn+l•k tp+l (-i)p-i 2 Jkz cos 8t

:•<" I = - (I + - Jn i)e dt

•,•: .I ni 2 A (Jn+l
•"
•. i tp (77a)

+l v Jkz cos e

Ii¢0 -- - jn•k (i + (t-tp)sin P) (Jn+l + Jn I)sln v e t dt

np pp - p
tP (77b)

S(_l)p-i cos e
•it¢ • (i + 2(t-tp.)) + Jn-i)cOs @t e t dt
ni = 2 _ A (Jn+l

t P
p (77c)

I (t-tp) sin v "•
Ii¢¢ = - jn•k (i + P)[J sin v cos @t (Jn+l - Jn I) i•-

np _ Pp P - , i•
t

P

Jkz cos 8t
-2 cos VpSin 8tJn]e dt (77d)

where Jn' P, and z are given by (115), (130) and (131) of [i], The

asterisk on the left-hand sides of (77a) and (77c) indicates that the
i• 77a) and (77c) are not all of Iit@ and Iit€

right-hand sides of ( but
•:,: nl nl .
,, only the contributions du• to th, region of integration for which •.

•i t t <__ t (77a) and (77c) are valid for i = p -i and i = p. :.•
•' Equation (77) can be rewritten as .•

•; .

•'• • • ., .•.•,.• .•. , ,•., -,•---
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*ite jf+l lrkA P FF(1)Pij l+l iT MA
ni 4 Fn+i,a n-~, 4 (F +l~b F -F ,b

(78a)

n
TrkA sinv A sin v

-- -'[F + F +( + F
np 9.n+l, a n-lba 2 p n+1-,b n-1, b

(78b)

jfn ir kA cos0 (l) pi jf n 1TkA cos 0t
- ~ (F + F )+ (Fn~~+n..b

ni1 4 n+1, a n-lba 4nlbF-

(78c)

n+l
7T -kA sinv Cos0 A sin v

- p 2 p t(n+l,a n- Fn a) + p n~~ -

p

A sin v
+ J r kA Pcos v sin 6 [F na+P2 F b] (78d)

where the F's are given by (128) and (129) of [1]. The nT Point Gaussian

quadrature formulas for them are

"IT (nT,) jk2 cos 6
F ma A k Jm(ký z sin 0 t)e k t(79a)

m=n-l ,n, n+l

'T (n T) (rT Jkz Xcos 0 t
"ub, Y_ At, x, J m(kO zsin t )e (79b)

where J is the Bessel functiona of the first kind and where and
m (

are given by (134) and (135) of [1]. The abscissas x, and weights

(n T)
A~ are tabulated in Appendix A of [10] for several values of nT..

j
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V. NUMERICAL RESULTS

Computed results for the electric currents induced by an axially

incident wave on a sphere, a cone-sphere, and a finite cylinder are pre-

sented in Figs. 1-14. For axial incidence, 6 is either 0* or 1800 and
t

the only non-zaro excitation vectors for the 6 polarized plane wave (69)

are

F l- [ j(80)

It is evident from (12) and (13) that

tt ~t4 ytt

(81)

yY# Y44 Y
-1 -- 1 1_.

In consequence of (80), (81), and (10), the only non-zero column vectors

It and V are given byn n

L ] (82)L ,J L
where the column vector on the right-hand side of (82) satisfies (10)

for n - 1.

In view of (3), substitution of (82) into (2) and subsequent

division by k give

T T(t) P (t)
2 -u c j 2t -C-) + 2jysin (n I (83)

The IHJ1 witten insted of k on the left-hand side of (83) is the

P
I,- - - - - __ ____ ____ ____
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"magnitude of the incident magnetic field. This magnitude is indeed

equal to k. At t tp+l, the t compoannt of (83) reduces to

J 2I1
t = p cos 4, p=l, 2, ... ?-2 (84)

IlI kP(t P1 )

where p(t I) is the value of p at t = t . At t tp, the 4 component

of (83) reduces to

J 2JIý sin ,
Hi ~k~p p =12..- (85)

Here, J and J are, respectively, the t and 4 components of the

t 4

electric current J. In Figs. 1-14, 1 in the 4 = 00 plane is plotted

ITI
with squares and - in the 4 900 plane is plotted with octagons.

These currents are plotted versus t/X where t is the arc length along

the generating curve and X is the wavelength. The horizontal axes in

Figs. 1-14 were labeled T/X because the lower case letter t could not

be drawn by the plotter.

Figures 1-4 display computed values of electric current induced

on a conducting sphere of radius .2X illuminated by a plane wave. Figure 1

shows the H-field solution of [2], Fig. 2 shows the present H-field solution.
Fig. 3 shows the E-field solution of [2], and Fig. 4 shows the E-field solu-
tion of [1]. The squares and octagons represent computed values of

and i , respectively. The solid curves represent the Mie series

solution [13]. In Figs. 1 and 3, the squares and octagons are horizontally

located at the peaks of the triangles used [2]. In Figs. 2 and 4, the

squares are placed at the peaks of the triangles (5) and the octagons are

placed at the centers of the pulses (6). That is why the squares and the
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2.0 r I I
ti

S.2.x

2•: 0.8 •

): CONDUCTING
:: ' --1 SPHERE

"' " t

INCIDENT
WAVE

•:•. . 0 4
.0 .1 .2 .3 .4 .5 .6

T/XFig. 1. Electric current on a conducting sphere of radius 0.2X. The
squares and octagons represent the H-field solution of [2].
The solid curves represent the Mie series solution.• . ~~2.4 4• t I 4

0,

tINCIDENT

WAVE
0.0 i --q-i i-- -- .---

.0 .1 .2 .3 .4 .5
T/> ,

Fig. 2. Electric current on a conducting sphere of radius 0.2X. The
squares and octagons represent the present H-field solution.
The solid curves represent the Mie series solution.

-,¢.
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II

- !2.4, i i , i , • . , : i

t2 -.- f

"' " CONDUCTING
.•' i • SPHERE

t
INCIDENT

WAVE
•: 0.0 i i ' " I I II |"

1 0. .2 .3 .i4 .5 .6

T/x
Fig. 3. Electric current on a conducting sphere of radius 0.2X. The

4 squares and octagons represent the E-field solution of [2].

The solid curves represent the Mie series solution.

•" 2.0-

t
INCIDENT

WAVE

.0 .1 .2 .3 .4 5.
T/X

Fig. 4. Electric current on a conducting sphere of radius 0.2X.
The squares and octagons represent the E-field solution
of [i]. The solid curves represent the Mie series solution.
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octagons line up with each other in Figs. 1 and 3 but are staggered in

Figs. 2 and 4. The oscillations of the octagons about the solid curve

in Fig. 3 are not surprising because the particular size of the sphere t
places the electric current error in Fig. 5 on page 32 of [2] near one

of its peaks.

Figures 5-10 display computed values of electric current induced

on a cone-sphere by plane waves incident from both axial directions. The

squares represent and the octagons represent These symbolslu"i

are connected by straight lines in order to improve readability. The

currents in Figs. 5 and 6 agree reasonably well with those in Fig. 7 of

[1]. Likewise, the currents ia Figs. 8 and 9 agree reasonably well with

those in Fig. 8 of [1]. The jagged nature of the • components of current

in Figs. 7 and 10 is probably spurious.

Finally, Figs. 11-14 display computed values of the electric cur-

rents induced on a closed cylinder of length .5X and radius .25X by an

axially incident plane wave.

The currents in Figs. 2,4,6,9,12, and 14 were calculatcd with

nt nT=2

n 20

The currents in the rest of the figures were calculated with n4 = 20

in [2]. The IBM System 370/155 under WATFIV took 29 seconds of exe-

cution time to calculate the H-field solution in Fig. 6. The sub-

routine YMAT was used for this calculation. The joint calculation of

the H-field sclution in Fig. 6 and the E-field solution of [1] in

Fig. 7 of [1] took 45 seconds of execution time. The subroutine YZ

was used for this calculation. The joint calculation of the H-field

solution of [2) in Fig. 5 and th E-field solution of [21 in Fig. 7

took 39 seconds of execution time using the subroutine YZ of [14].
Hence, the present H-field solution and thze E-field solution of [Il are

slightly slower than the H-field and E-field solutions in [2].

NL
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2.5-

2.0

too 20' 0.4* to .4 8X,.\ NCIOENT

.0

.0 .2 A.6 .8 1.0 1.2 1.
T/X

Fig. 5. Electric current induced on a cone-sphere by an axially
incident plane wave. Incidence on sphere, H-field
solution of [21.

2.5-

2.

two 20 .X t, 8 .... INCIDENT
N01 1.Xt.58X 

WV

1.0.2 .. 6.0 12 A

TA
Fig. 6. Electric current induced on a cone-sphere by an axially

incident plane wave. Incidence on sphere, present H-field
solution.



33

3.0-

2.5-

t~oo 200 0.4k 1.414 8 X .. INCIDENT

IV.5

.0 .2 *1 6 T>.8 1.0 1.2 1.14

Fig. 7. Electric current induced on a cone-sphere by an axially
incident plane wave. Incidence on sphere, E-field solution
of [2].

2.5-

2.0-

INCIDENT tu 1.48

.0 WAVE _

T/>.
Fig. 8. Electric current induced on a cone-sphere by an axially

incident plane wave. Incidence on tip, H-field solution
of [21.
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3.0  i I i I i i i

2.5-

1. 35.5

1.0 WAVE. . .0 12 .

T/>.
Fig. 9. Electric current induced on a cone-sphere by an axially

incident plane wave. Incidence on tip, present H-field
solution.

2.0j

2.0-

.53b

Fig. 10. Electric current induced on a cone-sphere by an axially
incident plane wave. Incidence on tip, E-field solution
of [2].
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CONDUCTI NG
CYLINDER-.5

taO

0.0 0.25 0.5 0.7$ 1.0

Fig. 11. Electric current induced on a closed cylinder of length 0.59,
and radius 0.25X by an axially incident plane wave. H-field
solution of [2].

CONDUCT ING

CYLINDER-.25

_ _ _ _ _

MCIE4

0.0 0.25 10.5 0.75 1.0
T/X

Fig. 12. Electric current induced on a closed cylinder of length 0.5 X
and radius 0.25X by an axially incident plane wave. Pr~sent
H-field solution.
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4.- I ' I
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CONlDUCTING
SCYLINDER--- .25X.

•7 .5

- t0
•'•?• i •.r" 2.iNCIDEN'

"N 2.WAV E

0. T
0.0 0.25 0.5 0.75 1.0

T/>.
Fig. 13. Electric current induced on a closed cylinder of length 0.5X

and radius 0.25X by an axially incident plane wave. E-field
solution of [2].

4 . I I .. .. I . . .. I

CONDUCTING
3. CYLINDER- .25X3.--* .5'X

S.t-0

1.1 I NCI D E IT
-- WAV E

0.0 0.25 0.5 0.75 1.0
T/A

Fig. 14. Electric current induced on a closed cylinder of length 0.5X
and radius 0.25X by an axially incident plane wave. E-field
solution of [1].
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The results of calculation of the present H-field solution and

E-field solution of [1) for the sphere, cone-sphere and finite cylinder

examples with

nt n 4

u 48n@ = 4

were so close to the results in Figs. 2,4,6,9,12, and 14 that distinc-

tion was impossible.

!A

[I

i! I.I
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PART TWO

COMPUTER PROGRAMS

I. INTRODUCTION

A computer program which implements the present H-field solution

is described and listed in Part Two. This program consists of the sub-

routine YMAT, the function BLOG, the subroutines PLANE, DECOMP, and

SOLVE, and the main program for the H-field solution. The subroutine

YMAT calculates the elements (12) of the moment matrix in (10). The

function BLOG is called by YMAT. The subroutine PLANE uses (78) to

calculate the excitation vector on the right-hand side of (10) for a

0 polarized incident plane wave. The subroutine PLANE also calculates

the excitation vector for a 4 polarized plane wave, but this vector is

not used in the main program. The subroutines DECOMP and SOLVE solve

the matrix equation (10) for I and I . The main program for the H-field
n n

solution obtains the electric current induced on a conducting body of

revolution by an axially incident plane wave. The subroutines YMAT and

PLANE are designed not only for axial incidence but also for oblique

incidence. For axial incidence, n = +1 and 0 of (71) is either 00 or
__ t

1800. The subroutines YMAT and PLANE admit n = Ml,Ml+l,...M2 where
M2 > M1 > 0. The subroutine PLANE also admits arbitrary values of 0

t
Formulas on pages (28) and (29) of [23 obviate calculation of moment

matrices and plane wave excitation vectors for negative values of n.

A computer program which implements both the present H-field

solution and the E-field solution of [(] is also described and listed

in Part Two. This program consists of the previously mentioned sub-

programs BLOG, PLANE, DECOMP, SOLVE, a new subroutine YZ, and the main

program for both the H-field and E-field solutions. The subroutine YZ

calculates the moment matrices in (10) of the present report and in

(6) of [l]. The subroutine YZ calls the function BLOG. The subroutine

PLANE calculates the excitation vector on the right-hand side of (10)

for the 0 polarized plane wave. PLANE also calculates the elements

LI
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Vte and -V of (74) for use on the right-hand side of (6) of [I]. In
ni ni

addition, PLANE calculates excitation vectors for the 4 polarized plane

wave but these vectors are not used in the main program. The subroutines

DECO1P and SOLVE solve the matrix equations (10) of the present report

and (6) of [1]. The main program for both the H-field and E-field solu-

tions obtains both the present H-field solution and the E-field solution

of [I] for the electric current induced on a conducting body of revolu-

tion immersed in an axially incident plane wave.

II. THE SUBROUTINE YMAT
t

With regard to (10), the subroutine YMAT(M1, M2, NP, NPHI, NT, IN,

RH, ZH, X, A, XT, AT, Y) puts in Y the moment matrices Y defined byn

ytt t
n n

Y = nn M1, Ml+l,....M2 (86)n

n n

Storage in Y is such that the ith column of Y goes from Y((i-l)*N +

(n-K1)*N*N+l) to Y(i*N+(n-M1)*N*N) where

N - 2*NP- 3 (87)

The only output argument of YMAT is Y. The rest of the arguments

of YMAT are input arguments. The input argument IN generalizes YMAT

ftcr use with problems other than conducting body problems. The term

(IA )/P in (22d) and the quantities Itt in (23) are multiplied by IN
q q n

in the subroutine YMAT. Thus, the argument IN should be 1 for the

present H-field solution. In this solution, the magnetic field is evalu-

ated just inside S. Magnetic field evaluation just outside S can be

obtained by setting IN- -1.

Each of the input arguments except M1, M2, and IN represents a

variable in Part One of the text. The correspondence is tabulated as

-!i
. . . . .. . . . . . . . . . . . . . . . . . .
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Input Equation
Argument Text Variable Number

NP P 3

NPHI n 36

NT n 35

RH kp(t.), j = 1,2,...P 21
IJ

ZH kz(tj), j = 1,2,...P 21

(n)

X x£ , £ = 1,2,...n 37
S~(n)

.i.A A-, 1 2 .. n 36

(n )

(nt £'' = 1,2, ...nt 35

XT xi,(nt

tAT AZ , T = 1,2,...nt 35

Here, P(t) and z(t7) are the values of p and z at t=t on the generating curve

and k is the propagation constant. The generating curve starts at t = t

and ends at t = tp. The input argument P must be a positive integer not

less than 3. The input arguments NPHI, NT, X, A, XT, and AT are Gaussian

quadrature data. Lines 11 and 12 put c and c of (31) in CT and CP,
t '

respectively. The subroutine YMAT calls the function BLOG which is de-

scribed and listed in Section III of Part Two.

Minimum allocations are given by

COMPLEX Y(M3*N*N), GA(NPHI), GB(NPHI), GC(NPHI),

GIA(M3), G2A(M3), G3A(M3), GlB(M3), G2B(M3),

G3B(M3), GlC(M3), G2C(M3), G3C(M3)

DIMENSION RH(NP), ZH(NP), X(NPHI), A(NPHI),

XT(NT), AT(NT), RS(NP-l), ZS(NP-I), D(NP-1),

DR(NP-I), DZ(NP-I), C2(NPHI), C3(NPHI),

C4(M3*NPHI), C5(M3*NPHI), C6(M3*NPHI),

R2(NT), Z2(NT), R7(JNT), Z7CNT)

U
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where N is given by (87) and

M3 M2- Ml + (88)

The elements of Y are calculated from (23) and (24) with Gn2 m

evaluated as in Section III of Part One. DO loop 11 puts £ in C2
2 1 2 1 k

and 4sin in C3. is given by (37) and 4sin2(1q Is needed

in order tj evaluate (15) at 0 = 0. With regard to (36), inner DO

loop 29 puts

(no) 21
A•A sin (• 4£) cos(n4£) in C4,

(n )
2lA cos cos(n ) in C5.

!• (n )

and2 A sin 0 sin(ný) in C6.

The index JQ of DO loop 15 obtains q in (23) and (24). With

regard to (22d), line 69 puts (IN)*(A q)/pq in P2. DO loop 12 puts

kp' and kz' of (29) in R2 and Z2, respectively. DO loop 12 also

accumulates the products of IN with (23a), (23b), and (23c) in PlA,

PIB, and PlC, respectively. The index IP of DO loop 16 obtains p

in (24). Lines 106-112 put kd of (32) in D6. If either case 1 ofo

(30) or case 3 of (51) is obtained, branch statement 26 sends execu-

tion to statement 41. If either case 2 of (39) or case 4 of (60) is

obtained, execution pioceeds to line 114. Lines 114-235 calculate

Gmo for case 2 and case 4. Lines 237-308 calculate G for case 1

and case 3. Here, G is defined by (25). In cases 2 and 4, the

integratýon with respect to t' is done first. In cases 1 and 3, the

integration with respect to ý is done first. In all cases,

Gml is stored in GmA(n-Ml+l)

m = 1,2,3
Gm2 is stored in GmB(n-Ml+l) nm2 n =Ml, Ml+I,...M2

G is stored in .GmC(n-Ml+l)
m3

i ' V
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With regard to (41), DO loop 33 puts

Hl( 4 K) in GA(K)

H2(4K) in GB(K) K = i,2,...n

H3 (K) in GC(K)

where is given by (37). Line 123 is based on (48). DO loop 35
7K

accumulates the H's of (49) in HIA, H2A, and H3A. DO loop 37 accumu-

lates in HiA, H2A, and H3A the sums on £' in (44). If kIk < .5, then

the approximation

kR (kR)2 (kR). (kR) (kR) 4 .
G- 1 1 7 kR (I )2 " I) - -2 -- ) (89)3 2kR _8-(1l- 8 2 3( 1 0(kR) 1 2)-1 8

is invoked in order to avoid excessive roundoff error. Lines 152 to 174

put the i's of (47) in Wl, W2, and W3. I and I are even in t and I
1 3 o 2is odd in t . These three I's are first calculated with t replaced by

Ito01 and then the sign of 12 is changed if t is negative.

2 -5 2 2 -5 2In line 161, d is compared to 10 r . If d < 10-r , then
pq pq

little confidence can be placed in the calculated value of d2 because
2 2

r and t are very close to each other in (46b). If
pq 0

d2< 105 r 2
pq

It I < Aq
0 21 5

then statement 52 stops execution because an accurate value of II can

not be obtained. However, if

d < < 1075 r 2
-pcj

It I I.

then accurate calculation of I~ may be possible. If Iti I A is

0 q
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2
appreciably greater than d2, then the approximation

li; k2_••r Ito + 1 A
i~ 1

w 1.t 0 1 + -A

kd2 j 2 2 1 1 2 (90)
d r 1t 2k (it Aq) (It Iit 21 - 2 Aq o 2 q

can be invoked. Line 163 puts the right-hand side of (90) in W4.

Lines 166-169 calculate the logarithm term in (47a) according to

log [(W + r2)- w1 > 0

=o[(w+r)logr(w+r)) I Wl =(91)
I, og (w2 + r 2 )(-w + r

.i"•lo d2" wl < 0

where

WI ItO -A
2 2q
1

w2 = I% + - Aq
w2  Ito 2 q

(92)

r2 +d2

2+ d2

This logarithm is stored in W.

Nested DO loops 45 and 46 calculate (50) for n MI + M-1 where

M is the index of DO loop 45. The index K of DO loop 46 obtains Z in

(50). With regard to (68a), lines 222-228 put

Sn• A(n

--- + --- log + )

AkPq Z=l 2 A q ) kp L q q j

+ pq

in D8. DO loop 67 adds D8 to G11. DO loop 67 also sets G2 1, G2 2, G2 3,

and G equal to zero. These four G's are set equal to zero when p q

31
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because the exact values of the coefficients by which they are multiplied

in (24) are zero then.

The index L of DO loop 13 obtains V' in (35). With regard to (36),

DO loop 17 puts G(u,oK) in GA(K). If (59) is not true, line 258 sends

execution to statement 51. Lines 259-277 calculate the terms in (57) which

do not involve G(u, *•). DO loop 62 accumulates

(n) 2

_ __ in D6
Ji= k a

and

n¢ (nA) 1 ____

A ' (3+ + 35) inD7.
k=a k2 Z 8k a

Line 275 puts the coefficient of nin (57c) in D8. Line 276 puts the portion

of(57a)which does not involve G(u,o2 ) in D6. Line 277 puts in D7 the
2

portion of (57b) which involves neither G(u,o2 ) nor (n + 1). DO loop 32

accumulates GI, G2, and G3 of (36) in HlA, H2A, and H3A, respectively.

The index M of outer DO loop 30 obtains n = M + M1-1. If (59) is true,

lines 295-29' add to HIA, H2A, and H3A the terms in (57) which are not

present in (36). Lines 298-306 do the sums with respect to V' in (35).

Lines 309-385 use the previously calculated Gm0 to obtain the

contributions (23) and (24) to the elements of the moment matrices Y
n

The index M of DO loop 31 obtains n = M + Ml-l. With regard to lines

348-355, the subscripts Kl to K8 for Y are the same as the subscripts

Kl to K8 for Z in Table 2 on page 50 of [1]. The variables UA, UG, UB,

UH, and UF incremented for p = q in lines 338-342 are intended for Y(Kl),

Y(K2), Y(K3), Y(K4), and Y(K8 + MT), respectively. Y(K8 + MT) is re-

served for (Yr)p of (24d).

n pq-.



001c LISTING OF THE SUBROUTINE YMAT
002- THE SUBROU~tNE YMAT CALLS THE FUNCTION BLOG
003 SUBROUTINE YMATCMIM2.NP.NPHINT~tNRHZHX.A,XT.ATY)
0 04 COMPLEX Y( 1600) vU *H1A *H2 A H3 A.CA (48) ,GB(48) ,GC (4 8) s V1BeH28 H3B
005 COMPLEX HlC.H2C.N3CUA.UBUC.UDUEUP.*GtA(101.G2A(l0).G3A(10)
006 COMPLEX G IB( t0) G28( t0).#G3BCItO),*G1C(l 0) sG2C( t0) *G3C( WsCMPLX
007 COMPLEX UG9UH
Doe 0114ENSION )SH(43).ZH(4:3).X(48),A(48).PXT(10).AT(l0).RS(42).ZS(42)
009 DIMENSION D(42).ORt42),DZ(42),C2(,8),C3148)sC4(200),CS(200)
OI D1 DIME NSI ON C6 (200) *RZ(10) 9Z2(10O),R7(IM),sZM(1)
0 11 CT=2.

012 CP=.1l
013 D0 10 1=2,NP
014 II-1

015 RS(T2)=.5*(RH(t)+AHUf2))

016 Z S (12)=. 5* (ZHC(I +ZH( I 2)

018 0 2=. 5*(ZH I ) -ZH 12)

022 10 CONTINUE

023 M3=M 2-14 1+1
024 M4=Mtl-

025SNPSIN(.570PH)
026 PP=9.869604

328 A1PH=P2*A (K)+
033 *04K=P*A*C3(K

035 S6-N=SIN(.SPH)
036 C3(K A.SNS
037 DO2 4= .5 ,M *3(K
038 D5=A(M4+M)(PH)

039 DA=ACOSI(PHP)

042 C6M=(M5)+M)*SNPHM

1)43 M5=MS444PHI
044 29 CONTINUE
045 tIl CONTINUE

046 PNI =o,785398 2*t N
1l47 PNZ=8.*PNI
048 U= (0.1I
049 MP=NP-1
050 9T=MP-t
05t N=MT+MP
052 N2N=MT*N
053 N2=N*N

054 NIN
055 DO 15 JQ~t*MP
056 KO=2
1)57 (F(JO*EO*1) KQ~1
058 fF(JO.EO.MP) KQ=3

059 Rt=RS(JO)

060 Zt=ZS(JO)

ý91~~~~ ," Ifiý--
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061 D I=D (JO
062 D2=DR (J 0)
963 D3=DZ( JO)
064 04-02/Rt
065 DS=D t/R I
D066 SV=D2/D I
067 CV0D3/01
068 P t PN I*D I
069 P2=PN2*DS
070 P3= 2.*D I
071 P=2 D
072 P50D4*D4
073 P6-01t*01
074 P7=P6*Dt
075 T6=CT*01
076 T62=T6+Dt
077 T62=T62*162
078 R6=CP*Rt
079 962=R6*R6
080 PIA=O.

oat PIB=O.
082 PtC=0.
083 00 12 L1,*NT
084 06=XT(L)

085 R2(L)=Rt402*Db
086 Z2(L)=Zt+D3*D6
087 07=P I*AT (L)/R2C(L)
088 08=10-06
089 09=08*07
090 P IA=PIA +D8*Dg
091 0,6=1.+D6
092 P IB=P IS+06*D9

093 Fl C=PtC+C6*06*D7
094 t2 CONTINUE
095 D0 16 tP1,NMP
096 R3=RS(tP)
097 Z3=ZS(tP)
098 R4=RI-R3
099 Z4=Z1-Z3
to0 0o 40 L1.,NT
101 D7=R2(L)-R3
102 DS=Z2(L)-Z3
103 R7 (L)=R3 *R2(L)
104 Z7(L)=D7*D7+DS*DS
105 40 CONTINUE
106 PH=R4*SV+Z4*CV
107 At=ABS(PH)
ID8 A2=ABS(R4*CV-Z4*SV)
109 06=A2
110 tF(AL.LE*Dl) GO TO 26
tit D6=At-Dt
112 D6=SQRT(06*064A2*A2)
11t3 26 1P(tP.NE.JQ.AN~D*R6.GTGD6.OR.T6.LE.D6)) GO TO 41
114 ZS=R4*R4+Z4*Z4
t15 RE=RZ*Rt
116 PHM=.5*R3*SV

117 Do 33 K=19NPHI
118 At=C3(K)
1 19 RP=ZS+RS*At
120 HIAO0.
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121 H2A=.

t22 H3A=0.
t23 IF(RR*LT.T62) GO T0 34
124 DO 35 L=19NT
t25 W=Z7(L)+R7(L)*At

t26 R=SGRT(W)
1 27 SN=-S(N(P)
12-8 CS=COS(R)
t29 HIS=AT(L )/(R*W)*CtAPLX(CS-R*SN*SN+R*CS)

130 HIA=H18ti1lA
131 H28=XTCL )*Ht-B
132 H2A=H2B+N2A

133 H3A=XT{ L )*H2B+H.3A
134 35 CONTINUJE
t 35 GO TO36
t36 34 00 37 L=1.NT
137 w=Z7(L)+R7(L)*At
138 R=SORT(W)

t39 IF(R#GToo5) GO TO 14
140 CS=R*(W*(.6944444E-2-W*.l736111E-3)-.125)
14 1 SN=bW*( .3 33333E- t-W*. *I190476E-2)-o 3333333-
142 HIE=AT(L)*CMdPLX(CS*SN)

t43 GO TO43
144 14 !SN=-SIN(R)
145 CS=COS(R)
146 H18=AT(L)/R*((CMPLXCCS-R*SN.SN+R*C?)-l.)/W-.S)

147 43 HtA=HIS+HIA
148 H28=XT(L)*H IS
t49 H2A=H2BGH2A
150 H3A=XT(L)*t428+H3A
151 37 CONTINUE
152 A1=PH+PHM*At

153 A2=ABS(Al)
154 R=RR-A2*A2
155 D6=Al2-D I
156 O7=A2+Dt

157 D62=D6*D6
158 072=C7*D7
159 D8=SORT(D62+R)

160 D9=SCRT(D724-R)
161 tF(R-(RR*1.E-5)) 52.52,53
162 52 (F(D6*LT*0*) STOP
163 W4=*S/D62-*5/O72
164 GO TO 54
165 E3 W4=(D7/D9;-06/DSI/R
166 54 IF(06*GE.0.) GO TO 38
t67 l=ALOG((O7+D91*(-06+C8)/R)
168 GO TO 39
t69 38 W=ALOGCCO7+C9)/(D6+08))
t70 39 W t=(W4+ &5*W)/D I
171 WS=A2/Dt

172 W2=I.5*(D9g-D8)-1./O9+1./08)/P6-W5*Wt
173 W3=(.25*(07*09-06*08)4W-R*(W4,.25*W))/P7-W5*(2.*W2+W5*W1)
174 EF(AI.LT*0.) W2=-W2
175 HIA=Wt+PH1A
176 H2A=%2+H2A
177 H3A=W3+H3A
178 36 GA(K)=HIA
179 G!?(K)=H2A
180 GCkK)=H3A

P.
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t8t 33 CONTINUE

182 K1=0
183 00 45 M1,oM3

184 HtA=Oo

185 H2A=0.
t 86 H3A=Oo
I87 HI 0=0.

188 H2B=0*
t89 H3E=0.

19)0 HIC~o.
191 H2C=0.
192 H3C=0.
t93 00 46 K=t*NPHt
194 Kt=Kt+1
193 06=C4(Kt)

196 D7=CS(KI)
197 D8=C6(Kt)
198 UA=GA(K)

199 UE=GB(K)
200 UC=GC(K)
201 Ht A=D6*UA+HI A
202 H2A=07*UA4-H2A
203 S A=D8*U A+H3A
204 HtB=06*UB+HIB
205 H28=D7*US+H28

206 H3B=083*Ue+H3B
207 HI C=06*U C+F tC
208 H2C=D7*UC+H2C
209 tH3C=O8S*UC+H3C
210 46 CONTINUE
211 GIA(M)=HtA
212 GA(M)=H2A
213 G3Cf =3

215 G26(M)=H2B
2 2t6 G38(M)=tI3B

217 GIC(M)=HIC
218 G2C(M)=H2C

2119 CG3C(4)=H3!C
220 45 CONTINUE

'!221 1Ff I P NE J GO TO 47[222 Al=OZ*O5
223 D8=0.
224 00 63 K~l.NPHt
225 DS=08+A(K)/SORTCC2CK)+At)

226 63 CONTINUE
227 A2=3.14IE93/05

228 08=(ELOG(A2)-Pt2*D8)/(R'5*Plt
229 00 67 M=t*M3

?30 GIA(M)=De+GIA(M)
23t G2A(M)0O.
232 G2LE(M)=0.
233 G2C(PA)0.
234 G3 A (11 0.
235 67 CONTINUE
236 GO TO 47

237 4t D0 25 M=I*M3
238 GtA(M)=0.
239 G2A(M)=0.

240 GAM=



rV
49

241 GM8(M i=0

242 G8M0

243 G3Bt M)=0.
244 GIC(P4)=0.
245 G2C( M)=O.
246 G3 C(M) =0 A

247 25 CONTINUE

248 DO t3 L=1,NT
249 PS5--R M
250 Z5=Z7 CL)
25t1 D t)17 K=I*NPM1
252 W=ZS 4R5 *C3 K I
253 R=.SORT( Wl
254 SN-S IN (P)

255 C S=C as(p)
256 GACK )=CMPLX(CS-P*SN.SN4R*CS)/(W*RI
257 17 CONTINUE
258 [F(R62.LE#Z5) GO TO 51
259 06=0*

260 07=0.
26t DO 62 K=I*NPHI-
262 W2=C2(K)

263 W=I./(ZS+R5*W21 *
264 WI=A(K)*SORT(W)
265 D6=D6+Wt*W2*W
266 O7=D7+w1*(.5+W*C1.*.125*%v*R$*W2*W2))j
267 62 CONTINUE
268 WI=R5/ZS
269 lW2=PP*Wt

270 W=SORT(W2)
271 %%3=1,+W2
272 P=SORT(W3)
273 W4=SORT(RS)
274 *W5=ALOG(W+R)
275 08=-Pt2*C6-(W/R-W5)/(R5*W4)
276 06=.*S*D

278 St At=AT(L)
279 A2=XT(L'2*At

280 A3=XTIL)*A2
*281 K10o

282 DO 30 m1.~m3
283 w=mm4-M
284 HtAO,.
285 H2A=Oo
286 I43A0. I

287 00 32 K1,oNPHI

288 Kl=Kt+t
289 HtE=GA(K)

290 H IA=C M KI)*H tB-H IA
291 I42A=CS(Kt)*HLB+H2A
292 H3A=C6( Kt)*HIB+H3A
293 32 CONT INUE
294 tF(R62*LE*ZS) GO TO 44

t,295 HIA0D6+HIA
296 H2A=D7-(W*W+I.)*06,+H2A

297 H{!A=W*DS4IN3A
298 44 GlA(M)=At*HtA'GI A(M
299 G2A(MO=AI*H2A4G2A(?4)
'400 G3A(M)=Al*H3A+GýSA(M)
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301 GI e(Ml=A2*HtA+Gl13CM) 361 CF(IP*EC*.PlP GO TO 22
302 G28(M)=A2*H2A.G28(m) 362 21 Y( K4) vU1
303 G35(M)=A2*H3A+G38CM) 363 Y(K8)=UE
304 GlC(M)=A3ý*HlA+GlC(M) 364 GO TO 22
305 G2C(M)=A3*H2A+G2C(M) 365 19 Y (KS )=Y f KS)+UC-tJ0
306 G3C(MA)=A3*H3A+G3C(M) 366 IF(gP.Eaot) GO TO 23
307 30 CONTINUE 346? Y(Kt)=Y(Kt)+UA
308 13 CONTINUE 368 Y(K7)=Y(K7)~.vjE
309 4.7 A20D(tP) 369 [P(tP*EO.14P) GO TO 22
310 A3=.5*A2 370 23 Y(K2)=Y(K2)+UJG
311 Wt=A3*(R4*D3-Z4*021 371 Y(K8)m:JE
312 W2~-A3*RZ!*D3 372 GO TC 22

* 313 A3DU)373 20 Y(K5)=Y(K5)+UC-UD
314 D6=DR(Ir-) 374 Y(K6)=IC+UD
315 D7=Z4*D6 375 tF(tPoEadt) GO TO 24
316 09=D3*D6 376 Y(Kt)=Y(KI)+UA
317 HtC=(RI*09)-02*(P3*A3+D7))*U 377 Y( K3)=Y( K3)+UB
318 H3C=A2*D1*U 370 Y(K7)VY(K7)4UE
319 H:2C=Z4*M3C 379 IF( tP sEQ s4P) GO '(0 2 2
320 H3C=D3*H3C 360 24 Y(K2)=Y(K2)+UG
321 WV3=P3*(R4*A3-D?) 38t Y(K4)=tJH
322 W4=P3*(D2*A3-Dg) 382 Y(K81=UE
323 W5=P3*Rt*A3 383 22 Y(K8+4T'=tJP
324 Jt4=JN 384 JM=JM+N2
325 DO 3t M=I.M3 385 3t CONTINUE
326 H2A=G2A(f0 386 t6 CONTINUE
327 HtA=GIA(M) 387 JN=JN+N
328 H28=G28( K) 388 t5 CONTINUE
329 Ht8=G18(M) 389 RETURN
330 UOZ~wt*H2A+W2*H1A 390 END
33~1 UB=W t*H2B+W2*H-1S
332 UIF=W3,N(H2A+04*H28)+W4*(H2B4.D4*G2C(M))+WS*(HlA+P4*H18+P5*GIC(M))

333 UA=UC-VB
334 UB=UC+Us
335 UG=UA
336 UH=Ua
337 tF( tP NE *JO 3 GO TO 48
338 UAnP1A+VA
339 UG=VI8t+UG
340 US=P t evuF
341 UH=PIC+UW
3.41V2 UF~p24+u
343 48 H3A=G3A(N)

W,344 H30=G38(M)
345 UC=H tC*113A
346 U0DtHtC*H3B
347 UF=t(2C*(H3A+04*H38)+H3C*(H38+D4.*G3C(MA))
.448 K!=[P+JM
349 K2=Kt4t
350 K3=Xlý-N
35t K4=K2*N
352 KS=K2+MT
353 K6=K4+MT
354 lKT=K3+N2N
355 KS=K4GN2N
356 GO TO (18*20919)*KQ

357 t 8 Y(K6)=UC+UD
358 IF(tI¾E0.1) GO TO 2.
359 Y(K3)=Y(K3)+tJB
360 Y(K7I=Y(K7)+UE

01

.,~ ~ i J 'A

el. . . .A'
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III. THE FUNCTION BLOC

The function BLOG(x) calculates log(x + V11 + x I fo x > 0.

The method of calculation is described on page 56 of [1].

001C LISTING OF THE FUNCTIOJN SLOG

002 FUJNCTION BLOGCX)

003 IF(X.GT**t) GO TO I

[I004 X2=X*X
005 BLOG=((.075*X2-.Ib66667)*X2.+I.)*X
006 RETURN
007 1 BLOG=ALOGC(X+SQRT(1.+X*X))

008 RETURN

009 EN
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IV. THE SUBROUTINE PLANE

The subroutine PLANE(MI, M2, NF, NP, IN, NT, RH, ZH, XT, AT,

THR, RE, R) obtains the plane wave excitation vectors (72)-(75). If

IN # 2, PLANE stores the plane wave excitation vectors (72) and (73)

for the present H-field formulation in RE. If IN j 1, PLANE stores

V. n , V and V'n of (74) and (75) in R. The minus signs

J;: attached to V~o 0and Vt transform the V's into plane wave measurement
ni ni

vectors. Plane wave scattering calculations are not done in this

report, but if they were done, plane wave measurement vectors would be

required. I it is put in RE(i+(n-Ml)*2*N+(K-I)*(M2-Ml+l)*2*N) for
ni

N = 2*NP-3

i = 1,2,...NP-2

n = M1, M1+1,...M2

K = 1,2,...NF

itoIi s displaced forward NP-2 locations from I in RE. For I
nini ni

ite
i = l,2,...NP-l. I is displaced forward N locations from In

ni.

I- is displaced forward N locations from I The angle of inci-
n.- ni

dence 0 of (71) is THR(K) radians and K = 1,2,...NF. The storage
t

arrangement of Vt V , -Vi, and V in R is the same as that of
iua e nit ni ni o

the I's in RE. The arguments RE and R of PLANE are output arguments.

The rest of the arguments of PLANE are input arguments. Some of the
. input arguments obtain variables in Part One of the text. The cor-

respondence is tabulated as

I~
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Input Equation
Text Variable Nme

Argument Number

NP P 9

NT nT 79

RH kp(t•), j =1,2,...P 21

Jd;• ZH kz(t.), j =1,2,...P 21

(nT)TXT i = 1,2,...nT 7• •: •X~ýnT) ,T 2 •7

AT A• , = 1, 2 ,...nT 79 c

R Here, k is the propagation constant. Also, p(t.) and z(t.) are the

values of p and z at the point t t. on the generating curve. This curve -

starts at t = t and ends at t = t. It is assumed that P is not less
than 3. The input arguments NT, XT, and AT are Gaussial, quadrature

data.

Minimum allocations are given by

COMPLEX RE(2*N*(M2-Ml+I)*NF), R(2*N*(M2-MI+l) *NF),

FA(M2+3), FB(M2+3)

DIMENSION RH(NP), ZH(NP), XT(NT), AT(NT), THR(NF),

CS(NF), SN(NF), R2(NT), Z2(NT)

The I's and V's are calculated from (78) of the present report

and (124)-(127) of [1]. The index IP of DO loop 12 obtains p in these

equations. With regard to (79), DO loop 13 puts 1 ký and k2 in R2
2 k an

and Z2, respectively. The index K of DO loop 14 obtains the Kth angle

of incidence. Nested DO loops 15 and 25 accumulate S*F and S*F

in FA(M) and FB(M), respectively. Here, FM_2,a and FM_2,b are given by

(79) and S is the normalizing constant for the Bessel functions. Accord-

ing to (9.1.46) on page 361 of [15],
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S j U() + 2 J2(x) + 2 JU(x) + (93)

where the superscript u means unnormalized, J (x) are the cylindrical

Bessel functions of the first kind and

x =k sin t (94)

The logic inside DO loop 15 is the same as that inside .he DO loop 15

which appears in the listing of the subroutine PLANE on pages 61 and 62

of [1i. If Ml 0, lines 88 and 89 use the formulas

Fla 1
S~(95)

F-l,b lb-

to store F-l,a and F-l,b in FA(l) and FB(l), respectively.

The index M of DO loop 27 obtains n M-2. In DO loop 27,

Inlit is added to RE(Kl) for i p-lh "ni

*itO
I ni isput in RE(K2) for i pini

E I is put in RE(K3)
np

I is added to RE(K4) for i p-1
ni

Ini is put in RE(K5) for i= p

Ii is put in RE(K6)

np

The above I's are given by (78). The V's are given by (124)-(127) of [1].

Location of these V's in R is similar to location of the I's in RE.

• I
. i~
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001 LISTING OF THE SUBROUTINE PLANE
002 SUBPOUTtNE PLANE(M1WM2,NF.NPIN,NTRi-lZHeXTATTHR.RER)
003 COMPLEX RE(240).R(240) ,U.UI.FA(10),F8(I0),,UAUB.FIA.F18,F2A.F25

004 COMPLEX U2oU3*U4*U5.CMPLX

006 DIMENSION Z2(10)*eJ(50)
007 MP=NP-1

008 MT=MP-t

009 N=MT+MPI

0 11 00 It K~t*NF

012 X=THR(K)I
013 CS(K)=COS(X)
014 SN (K)=S[IN (X
015 I1I CONTINUE

016 U= (0 .1 .
017 Ut=3. t4tt53*U**Mt
018 M3=Mt+t

019 M4=M24.3

020 fF(t41.EQ.0) t'43=2
021 M5=Mt+2
022 M6=?42+2
023 DO 12 [Pl~t-P
024 K2=tP

025 I~tP+t
026 DR=.5*(RHUt)-RH(tP))
0 27 DZ=. 5*( ZH(lI)-ZH (IF))
028 o1=SORT(0R*OR+Dz*oZ)
029 R1=.25*(FH(I )+RH(IP))
030 ZI=.5* (ZH ( I)+ZH ( P) I
03t 02 .S*OR

032 OR=02/Rt
033 DO 13 L=t*NT
034 R2(L)=R I+D2*XT(L)
035 Z2(L) Z1 +OZ*XT(L)
036 13 CONTINUE
037 Wt=-.5*Dl
*038 W2--2 **D2
039 DO 14 K=1,NF
040 CC=CS(K)
041 SS=SN(K)
042 03=D2*CC
043 04=-DZ*SS
044 D5=-O1*CC
045 W3=-2.*D3

046 W4-2**04
047 w5=--.5*DS
048 00 23 M=M39M4
049 FA(M)=0*

050 FB(P4)=0.
051 23 CONTINUE
052 00 t5 L=1.NT
053 X=SS*R2(L)
054 IF(X.GT**5E-7) GO TO 19
055 00 20 P4=M39M4

056 FJ(M)=0.

057 20 CONTINUE
058 BJ(2)1.4
059 s=16

060 GO TO 18
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06t t9 M=2*8*X+t4o-2*/X 121 U2=D3*F IA4U5* A (M)
062 IF(X*LT..5) M-=lt .8+ALGGIO(XI 122 U3=D3*F1S4US*F804)
063 [F(14.LToM4) M=M4 123 U4D02*F2A
064 BJ(M)=Oo 124 US=D2*F-2e
065 1MM- 25 CFUtP*EO.1) GO TO 30
066 eJ?=t126 R(Kt)=R(Kt)+U2-U3
067 Do 16 J=4#1 t27 R C 4) =R ( W +U4-U5
068 J2=JM 128 IFUtP*EO.'4P) GO TO 29
069 JM=JMt4- t29~ -0 R(K2)=U2+U3
070 JI=JM-1 130 R(KS)=U44U5
07t BJ(JM)=J1/X*BJ(J2)-8J(JM+2) 131. 29 K2=K2+N2
072 16 CONTINUE 132 UA=U8
073 S=o. 133 27 CON~TINUE
074 IF{M#LE#4) GO TO 24 t34 14 CONTINUE
075 00 17 J=4*14,2 135 12 CONTINUE
076 S=S4-1.J(J) 136 RETURN
077 17 CONTINUE t37 END
078 24 S=SJ(2)+2o*S
079 18 ARG=Z2(L)*CC
080 UA=AT(L)/S*CMPLX(COS(ARG),StN(ARG;))

L081 UB=XT(L)*UA
082 DO 25 m=m39m4
083 FA(M)=BJU4)*UA+FA(M)

084 FB(M)=BJ(M)*UB+FS(M)

085 25 CONTINUE
086 I5 CONTINUE
187 IF(Mt*NE*0) GO TO 26
088 FA(t )=-FA(3)
089 FS( 11--FBM3
090 26 UA=Ut
091 DO 27 NNS,9M6
D092 M7=M-1
093 M8=M+l
094 F 2A= UA*( F A ( M8)+F A M7)
095 F2B=UA*(FB(M8)+FB(M7))

096 UB=U*UAI
097 F tA =US * (FA(M 8) -F A (M7))
098 Ft E=UB* (FB(MS)-FB(M7))
099 Kt=K2-t
to0 K3=K2+P4T

102 KS=K2+N
t01 K6=K3+N

106 E(K6 )=W3*(FtA+DR*F18)+W4*UA*(F.A(M)40R*FB(MIk)

t09 U4=W5*F2A
t to US=WS*F2e
I t I IFUIP*EOAt) GO TO 2t

1t2 RE(Kl)=PE(Kt)+U2-U3
1 13 RE(K4)=RE(K4)+V4-U5

1 14 tF(IP*EO*MP) GO TO 22
its 21 RE (K2) =L2+Q3
1 16 EK).A

117T 22 (F(1N.EG*1) TO 29
118o 28 R(K3)=D5*(Fkk- )R*F2B)

119 R(K6)=0l*(FtANýLqt.Fte)

120 U=04*U
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V. THE SUBROUTINES DECOMP AND SOLVE

The subroutines DECOMP(N, IPS, UL) and SOLVE(N, IPS, UL, B, X)

solve a system of N linear equations in N unknowns. The input to

DECOMP consists of N and the N by N matrix of coefficients on the left-

hand side of the matrix equation stored by columns in UL. The output
from DECOMP is IPS and UL. This output is fed into SOLVE. The rest of

the input to SOLVE consisus of N and the column of coefficients on the

right-hand side of the matrix equation stored in B. SOLVE puts the

solution to the matrix equation in X.

Minimum allocations are given by

COMPLEX UL(N*N)

DIMENSION SCL(N), IPS(N)

in DECOMP and by

COMPLEX UL(N*N), B(N), X(N)

DIMENSION IPS(N)

in SOLVE.

More detail concerning DECOMP and SOLVE is on pages 46-49

of [163.

4

II

t

•!i ,A
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001C LISTING OF THE SUBROUTINES DECOMP AND SOLVE i
002 SUEROUTINE CCM(stSL

004 DIMENSION C(0*P4)

005 DO0 t11,N
006 tps(t)uI

007 RN=O.

009 DO 2 J1.*N

013 I RN=ULM
014 2 CONTINUE

f)15 SCL( t)=I./RN

016 5 CONTINUE
017 Nml=N-1 '
018 K2=0
019 00 17 K=19NH1
020 B IG=O

022 (P=IPS(t)
023 IPK=IP+K2
024 SIZE (AES(REAL(UL(tPK))),ABS(AIMAG(UL(tPK))))*SCL(Ir-)
125 tF(SIZE-EtG) 11.1,1*10
026 10 Brc-=StzE

(027 IPV=T
028 It CONTINUE
029 IF(tPV-K) 14*151,14

030 14 J=tPS(K)
03t tPS(K)=IPSCIPV)

07'2 [PS( IPV)=J
0 33 t5 KPPItPS(X)+K2

034 P IVO TULCIKPP)
035 KPt=K+1

036 00 16 t=KPtvN
037 KP=KPP

038 IP~ IPS( I)+K2
039 EM=-UL(TP)/PIVOT

040 t8 UL( P)~-EM
041. DO 16 JKxPIN 061 DO I J1.ItMt
f)42 [P=IPl+N 062 SUM=SUM+UL (I P)*X(J)

043 KP=KP+N 063 t IP=tP.N
D44 ULUIP)=ULCCP)+EM4*ULCKP) 064 2 X( 1)=8( I PS) _SuM
045 16 CONTINUE 065 K2=N*(N-1)

046 K2=K2+N 066 E~P()K
047 t7 CONTINUE 067 X(N)=X(N)/ULt.(P)

ff48 RETURN 066 DO 4 tBACK=29N
049 END 069 t=NPt-tBACK
050 SUBROUTINE SO1LVE(N.IPSoUL.8,X) 070 K2=K2-N
051 COMPLEX UA.(1600)98(40)iX(40)*SUI4 071 tPt=tPS(t)+K2
052 DIMENSION tPS(40) 072 [pt=t+1

053 NPt=N+1 073 SUM=0.
r,054 IP=Ips(I1 074 tpzIpI

055 X(t)=B( (F) 075 DO 3 J-tPI.N
056 DO 2 t=29N 076 fP=IP+N

057 tp=IPS(9) 077 3 SUM=SW4+UL(IP)*X(J)
ý58 IPBIP078 4 )((I)=(X(I)-SUM),tjLcIPt)

0 39 (Mt11-t 079 RETURN

060 SUM=O. (%a( END
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VI. THE MAIN PROGRAM FOR THE H-FIELD SOLUTION

The main program for the H-field solution calculates the H-field

solution for the electric current induced on a conducting body of revolu-

tion immersed in an incident plane wave. Input data are read according

to

READ(I,15) NT, NPHI

"15 FORMAT(213)

READ(l,10)(XT(K), K = 1, NT)

READ(I,10)(AT(K), K = 1, NT)

10 FORMAT(5E14.7)

READ(1,10)(X(K), K = 1, NPIII)

READ(I,10)(A(K), K = 1, NPHI)

READ(I,16) NP, BK, THR(l)

16 FORMAT(13, 2E14.7)

READ(l,18)(RH(I), I = 1, NP)

READ(l,18)(ZH(I), I = 1, NP)

18 FORMAT(10F8.4)

The input data obtain variables in Part One of the text. The input data

are tabulated versus text variables in the following chart.

, 4,

4 ,44

ir4 s
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Data Text Variable Nme
Input TxVaibeEquationDa ta Numb er

NT n 35

NPHI n 36

XT x, , 1 .. n 35
t

(nt)
tAT A , 2= 1,2,.. 35

t

(n
!•.. X x , = , ,. . 37

(n¢)
A A£ , =1,2,.... 36

NP P 3

BK k 69

THR(1) 0 71
S) , j = 1,2,...P 21

ZH z(t ). J = 1,2,...P 21

(n) (n) (n (n
t(ntThe Gaussian quadrature data xi, , A, , x, , and A£ are given in

Appendix A of [10]. In the main program for the H-field solution, nT of

(79) is set equal to nt. NP controls the order of the moment matrix Y

of (86). This order is (2*NP-3). THR is in radians. THR should be

either 0 or Tr depending on the direction from which the incident wave

approaches. The subscript on THR is for compatibility with the subroutine

PLANE. p(t•) and z(tI) are the values of p and z at the point t - t on

the generating curve of the body of revolution. This curve starts at

1and ends at t = tp. p is the distance from the axis of the body

of revolution and z is the coordinate measured along this axis. RH and

ZH are in meters.

The main program for the H field solution calls the subroutines

YMAT, PLANE, DECOMP, and SOLVE. The function subprogram BLOG is also

..........
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needed because it is called by the subroutine YMAT.

Minimum allocations are given by

COMPLEX Y(N*N), R(2*N), C(N)

DIMENSION XT(NT), AT(NT), X(NPHI), A(NPHI),

RH(NP), ZH(NP), IPS(N)

where i
N = 2*NP-3 >

The t and P components of the electric current are calculated from
t

(84) and (85). The coefficients Ilp and I in these equations are the
pth elements of the vectors and which satisfy the n = 1 equation

in (10). DO loop 28 prepares RH and ZH for use in the subroutines YMAT

and PLANE by multiplying them by k. With regard to (10) line 41 puts

Y of (86) in Y. Line 46 calculates IPS and changes Y. Line 47 puts

the excitation vectors and I for the 0 polarized incident plane
1 1

wave (69) in R. Line 47 also stores the excitation vectors for the 4;

polarized incident plane wave (70) further on in R but these vectors

are not used in the main program. In line 50, the output IPS and Y from

the subroutine DECOMP is fed along with N and R into the subroutine
÷-t +6 -1I

SOLVE. SOLVE puts I1 and I in C.

The pth line printed out under the heading JT contains the real

part, the imaginary part, and the magnitude of the normalized t component

(Jt')/Iji of electric current at 4; 0' and t = tp+. The pth line

printed out under the heading JP contains the real part, the imaginary

part, and the magnitude of the normalized ; component (J )/IHil of electric

current at 4 9 and t =t According to (69b),
p

LiL =I t [Hiz0

where [H is the incident magnetic field at z 0. The sample inputz=0
and output data are for the sphere example of Fig. 2. The input array

ZH was constructed so that z = 0 at the center of the sphere.

777
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001C LISTING OF THE MAIN PROGRAM1 FOR THE H-FIELD SOLUTION
002C THE SUJBPROGRAMS YMAT*BLOG9 PLANE* DECOMP9 AND SOLVE ARE NEEDED

00//PGM JOB ( XXXX.*XXXX* t.1) 'MAUTZ *JOE' REGI ON=2OOK

004// EXEC WATFIV

D06sjoB NIAuTrZ9T ME=sPAGES=6O
107 COMJPLEX VC 1600) 9 R(240) 9C(40) *U*Ct
008 DIMENSION XT(10),AT(L0),X(48).A("8).RHC43).ZK(43).THR(3).KPS(40)
009 READ(t,15) NT.NPKI
010 15 FOPMAT(2(3)I
01 t %RtTE(3%30) NTiNPHI
012 30 FORMATt' NT NPHf*/tXst39f5)
013 PEAD(1v10)(XT(K)sK=IsNT)

r014 READ(I,tO)(AT(K)sK=tsNT)
015 10 FORMAT(SEI4*7)
016 WR[TE(39 It)(XT(K).K=tsNT)
017 WPITE(3o12)(AT(K)%K~tsNT)

018 tt FORMAT($ XT#/(L~o5Et4.7))
019 12 FORMAT(' AT'/(lX*5E14o7))
020 PEA0~t,10)(X(K)9K=tNPI-t)
021 READ(1v10)(A(K)sK=INPHI)
022 WR ITE(3i 13) X(K) *K=INPH()
323 WRITE(3*14)(A(K).tX=1#NPHt)
025 13 FORMAT(# A'/(IX,5EI4*7))
025 13 FCRMAT(I At/(tX95Et4#7))

026 REAOII~i6) NP*BK*THR(t)
027 16 FOTPMAT(I392E14*71
028 WRITE(3*17) NPBKTH-RUt)

029 17 FOFMAT(t NP*,6X.'BK'.12X,'THR'/lX,!3.2E14.7).
0 -70 READ(IvlE)(RH(1)#I=tvNP) *
031 PEAD (I s 8) (ZH( I) 9 =1 NP)
032 I P FORMAT( 1OF8%4)
033 WrZITE(3919)(RH(t)vr=t9NP)
034 WR IT E ( 3 v2 0)Z H ( I) st =*NP)
035 t19 FOFMAT(' RHO/(1XwI0F8.4)).
036 20 FORMAT( * ZHO/( iXPI0F8*4))
037 00 28 J=I*NP
038 RH(J)=BK*RH(J)
039 ZH(J)=PKvZH(JI

040 28 CONTINUE

044 TN-

045 29 FORMAT(' Yf/1kXp6E1.A))
046 CALL 13ECOMP(NIPSY)
047 CALL nLANE~1,1,1,NO.1,NT.RHZH.XTATTHRRR)
048 WVRITE(3v23)(Q(J)9J=19N)
049 23 FORMAT(f Rt/( IX96EI t 4))

050 CALL SOLVE( N*IPSoY*R*C)
D 51 U=( t
052 WRITE(392t)

053 21 FOFMAT(l REAL JT IMAG JT 14AG JTs)

057 WP(TE(3,sP) CIC2
58 25 F0RMAT(tX#3E1It4)
59 24 CrjNT!NUE

060 WRITE(3#26)
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06t 26 FORMAT(# REAL JP tMAG JP MAG JO I
062 MP=NP- t
063 D0 27 J=ttMP'
064 C1=4./(RH(J)+RH(J41))*U*C(J+MT)
065 C2=CAeS(C1)
D66 WR(TE(3,25) CtoCZ
067 27 CONTINUE
D68 STOP

069 END

S DATA
2 20

-0.5-773503E+O0 0.5773503E+00
O.IOQOOOOE+0t 09t000000E+0t

-0.993t286E4-O0-0.96397t9Ei-00-0.9t22344E+00-0.839tt70E+00-0.74633t9E+00'
-0.s6360537E+00-0*5108670E4-00--0.3737061E+00-0.2277859E+00-0.7652652E-Ot
0.76526C52E-Ot 0.2277859E+00 0 .3737061 E+00 0 #5 108670E+00 0.6360537E+00
0974633t9E400 0#8391170E400 0 #9 22344E+00 0.9639719E400 0.9993t 286E.C00E
0*176t401E-01 0.4060143E-01. 0*6267205E-01 0 *8327674E-0 t 0.*101930 tE+00
O.tt8t945E+00 0.13i6886E400 0 0 t20961E+0O 0.14gt730E4-00 0* t52 7534 E+00
0* 1527534E+00 0# t49 t730E+00 O.1420961E-.00 0 .1 316886E+00 0 * t18 1945E+00
0*t01930tE+O0 0 * 1327674E- 01 0.6267205E-01 0*4060143E-0t 0 9 L76t 40tE-Ot
16 0.1256637E+01 0*3141593E+01
0.0001) 0.2079 0.4067 0.5878 0.7431 0,8660 0.95t1 0.9945 0.9945 0.9511
0.8660 0.7431 0.5878 0.4067 0.2079 0.0000

-1.0000 -0.9781 -0s9135 -0.8090 -0.6691 -0.5000 -0.3090 -0.1045 0.1045 0.3090
0.5000 0.6691 0.8090 0.9t35 0.9871 1.0000

$ ST OP

PRINTED OUTPUT
NT NPHI
2 20*

-0.5773503E+00 0.*5773503E+00

0.1000000 E+01 0 sI OOOOOOE4O I
x
-0 993 1286E+00-0 v9639719E+00--0 9122344 "" 831 0+0- 43tE0
-0.6360537E+00-0.5108670E9-00-0.37370)61.. .*2277859E+00-0*7652652E-Ot
0.7652652E-01 0.2277859E+00 0 .3737061 E4C-. ,, .5108670E+00 0.'6360537E+00
0*7463319E+00 0#839ttOE400 0.9t22344E+00 0*9639719E+00 0*9§3t286E403

0.1t76 40t E-0 1 0 *4060 143E-0 t 0 *6267208E-Ot 0*8327675E-01 0*101930tE+00
0.118'o14SE'00 0.13t6886E4-00 0.142096tE+00 OeL491730E4-00 0#1527534E+00
0.1527534E+00 0.1491730E+00 0*1420961Ts-00 0.13t6886E4-00 0*tl8t945Ei+00
0# t0t9301E+00 0#8327675E-Ot 096267208E-Ot 0 *40601t43E-0t1 0 * 761t40t1E-0
NP BK THR
16 0.12!56637E401 0.314t593E+0'.

RH
0.0000 04.2079 0,4067 *'.5878 0.7431 0.8660 0.9511 0.9945 0.9945 0.95t1
0.8660 0.7431 0.5878 0.4067 0.2079 0.0000

ZH
-1.0000 -0.9781 -0.9135 -0*8090 -0.6691 -0. 5000 -0#3090 -0.1045 0,1045 0.3090

0.5000 0.6651 0.8090 0.9135 0*.-871 1.0000
y
0.2486E+01-0.2338E-02 0&4211E400-0*4919E-ý2 0#6397E~-0t-0,L2888E-02
0*5598E-01-0. 1382E-Ot 0*458E8E-0(-0.1923E-0t 0o4455E-0t-0*2463E-0t
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0.1475E-01-0*445SE-01 0.1 iO6E-01-0*4490E-01 099666E-03 009243E-0ý
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-0.9622E-03-Oot80:!E-01-0.4589E-02-O.*6791E-01-0.9512E-02-O.5939E-01
-0, 15t 7E-01-O.529?E-01-0.210!5E-Ot-0.4766E-0I-0 *266SE-01-O.425BE-Ot
-0 #3054E-0 1-0 *:74tE-0 1-0 a3578E-0 t-0*3226E-01-O.3903E-O 1-O.-,2732E-01
-O.4137E-0t--O.2279E-Ot-0.4297E-01-O.189tE-O1-0.4402E-Ol-0.1588E-Ot
-0.4484E-Ot-0.1362E-Ot-0.4470E-Oi-0.1244E-01
R
-0 . 2834E 400-0 * 774eEE400-0& 3446E +0- 7491E+00-0* , 86ZL`ý00-0* 6972E+00
-0 5523E+00-O * 6U97E+00-0 .6671 E400-0 .4300 E400-0.7kO09E~iý-O, 3088E400
-O.8136E+O0-0.1067E*0O-0.8t343E400 O.tO67E+00-0.7609E+00 033088~E00
-0.6671E4-00 0#4800E*0O-0.5523E+O0 0,609iE+00-O.4386E400 0*15972E+0O
-0*3454E+0O 0*7550E+0Q0-271E4-00Oo078t0E+00 0*7758E+O0-Oa2679EO00
Oo7267E+OO-0*29S9E+00 O.6295E+0O-0*3378E+00 0*489tEoO0-Oq3684E+OO
0.32.36E+00-0*3603E+00 0.t626E*00-0*29ZtE+00 0*4374E-Ot--0.t6S2E+00

0.OOOOE+00 0.OOOOE+00 0*4374E-01 0*1652E+00 0.1626E400 092931E+00
0.3236E+00 0*2603E+00 0*48gtE400 0#3684E+00 0#6295E+00 O.33T8E400
0*728tE+00 0*2922E4-00 0*7778E+00 0 26 n-E+00

REAL JT (MAG JT MAG JT
-0*7989E+00-0.1959E+01 0*2ltSE+01

-C*9480E+00-O.1930E+0t 0*2t5tE+Ot
-O.1162E+OI-0.1836E+0% 0*2173E+01
-0. 140C-E+01-O.t65aE+0t 0*2175E+Oi
-0,1630E+01-0 .1372E+01 0.2130E+01
-0.,1764E+0t-O*9802Eiv0OO 02Ot8E+Ot
--0*1754E+0t-0.5t27E+00O 0.827E+01
-0*1569E+0t-0.2428E-01 00 1569E+01
-0#12t8E+0t 0.4228E+OO 091289E+01
-0.7475E+00 0*7772E+00 O.1078E+0t

-0.2294E+00 0 .!0 6E+01 I .1042E+01
0*2592E+00 0.1146E-+Ot 0.tt?4E+01
0.6569E+00 0 # 210E+01t 0.t377E+Ot
0.9016E+00 0.t190E4-0t 0.t4S3E+0%
REAL JP VAAG JR MArGJP

0*7731E+00 0*1878E+Ot 0.203tE+Ot

OsS559E400 0.1782E*01 Oot976E+O1
0.9955E+00 0,1602E4-01 011888E+01
0.1L48E401 0.1333E+Ot 0*17C59E+01
0*1240E401 0#4;997E+00 0.1593E*01

0.t229E*01 0.tC56';E+00 0*131;4E+01
0.1106E*01 0&3761E+00 0.1168E+Ot
0*9065E+00 0.2275+00 0*9332E+00
0*701OE+00 0*2213E*OO O.7351E400
0*5589E+00 0#3543E+00 0*6fe18E+0O

0#5201'z2+00 0.5631E+0C0 0#7665E+00
0.S?89E+00 0#7ie0;E+00 0.972tE+00
0.6903E+00 0.S536E+00 0.1177E+Ot
0.8t4tE+O 0 * t078E401 I .t35tE+01
0#6998E+00 Dott48E+01 0*1459E+Oi
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VII. THE SUBROUTINE YZ

With regard to (10), the subroutine YZ(M1, M2, NP, NPHI, NT, IN,

RH, ZH, X, A, XT, AT, Y, Z) puts in Y the moment matrices Y defined
n

by (86). With regard to (6) of [1], the subroutine YZ puts in Z the

moment matrices Z defined by
n

Ztt ztýFz t
11n n

, Z= , n = Ml, M1+1,... M2 (96)
Sn

•}I . Zt Zi

•>-.L n n

"The Y obtained by YZ is exactly the same as the Y obtained by the sub-

routine YMAT which is described and listed in Section II of Part Two.

The storage arrangement of the elements of Z in Z is the same as the
n

arrangement of the elements of Y in Y. The Z obtained by YZ is nearly
n

the same as the Z obtained by ZMAT of 1i]. The greatest difference in

calculation is that, in accord with (68a), the second sum with respect

to V in (97) of [1i is replaced by the exact value of the correspond-

ing integral with respect to t'. The purpose of the subroutine YZ is

to obtain Y and Z more efficiently than by means of YMAT of the present

report and ZMAT of [i]. Increased efficiency is possible because several

calculations done in YMAT of the present report are repeated in ZMAT of [1].

The only output. arguments of YZ are Y and Z. The rest of the argu-

ments of YZ are input arguments. The input arguments of YZ have the same

names and meanings as the input arguments of YMAT. Lines 13 and 14 put

c and c of (31) in CT and CP, respectively. The subroutine YZ calls the

function BLOG which is described and listed in Section III of Part Two.

Minimum allocations are given by

COMPLEX Y(M3*N*N), Z(M3*N*N), GA(NPHI), GB(NPHI),

GC(NPHI), GD(NPHI), GE(NPHI), GlA(M3), G2A(M3),

G3A(M3), GlB(M3), G2B(M3), G3B(M3), GIC(M3),

G2C(M3), G3C(M3), G4A(M3), G5A(M3), G6A(M3)

G4B(M3), G5B(M3), G6B(M3)
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DIMENSION RH(NP), ZH(NP), XCNPHI), A(NPHI), XT(NT)

AT(NT), RS(NP-l), ZS(NP-1), D(NP-l), DR(NP-I)

DZ(NP-l), DM(NP-l), Cl(NPHI), C2(NPHI), C3(NPHI)

C4 (M3*NPHI), C5(M3*NPHI), C6(M3*NPHI), R2(NT),

Z2(NT), R7(NT), Z7(NT)

Here, N and M3 are given by (87) and (88), respectively.

The elements of Y are calculated from (23) and (24) with Gn ma

evaluated as in Section III of Part One. The elements of Z are calcu-
2
n

lated from (48)-(51) of [i]. DO loop 11 puts 4Q in Cl, in C2, and
21 s 1

4 sin (•- 4£) in C3. is given by (37) and 4 sin 2( ) is needed in
order to evaluate (15) at • = With regard to (36), inner DO loop 29

puts

(nt)
"rA£ sin2(1 4£) cos(n4.) in C4,

i(n
A cos cos(ný) in C5,

and
(nt)

2 A sin • sin(n4£) in C6.

The index JQ of DO loop 15 obtains q in (23) and (24) of the present

report and in (48)-(51) of [1]. With regard to (22d), line 75 puts

(IN)*(Tr• )/p in P2. DO loop 12 puts kp' and kz' of (29) in R2 and Z2,

respectively. DO loop 12 also accumulates the products of IN with

(23a), (23b), and (23c) in PlA, PIB, and PlC, respectively. The index

IP of DO loop 16 obtains p in (24) of the present report and in (48)-(51)

of [1]. Lines 114-120 put kd of (32) in D6, If either case 1 of (30)
0

or case 3 of (51) is obtained, branch statement 26 sends execution to

statement 41. If either case 2 of (39) or case 4 of (60) is obtained,

execution proceeds to line 122. Lines 122-288 calculate Ga for case 2

and case 4. Lines 290-388 calculate G for case 1 and case 3. In cases

2 and 4, the integration with respect to t' is done first. In cases 1

and 3, the integration with respect to is done first. In all cases,
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G is stored in GmA(n - Ml+l)
ml

im = 1,2,3
G is stored in GmB(n - MI+1) (97)
m2

n = Ml, M1+1,...M2

G is stored in GmC(n - MI+I)
m3

Gia is stored in GmA(n - MI+1) im = 4,5,6

(98)

G is stored in GmB(n - MI+1) n = M1I, Ml+1,...M2
tab

The G's in (97) are defined by (25). The G's in (98) are defined by

(56)-(57) of [1].

With regard to (41), DO loop 33 puts

H l•) in GA(K)

1H2(dK) in GB(K) K 1,2,...n

H 3(4K) in GC(K)

DO loop 33 also evaluates G and G of (71)-(72) of [1] at P=PK and putsa bK
them in GD(K) and GE(K), respectively. The branch statement in line 133
is based on (48). DO loop 35 uses (49) to calculate H (4K) of (41). The

a K
index L of DO loop 35 obtains V in (49). DO loop 35 uses the Gaussian
quadrature formulas

n
t (n)• (t) -jkR

SG Ak e
a '=i A (99a)

nt (n) (n) -jkR
F Gb A t e (99b)G b A V , I R-

tcaG and Gb of (71)-(72) of [1]. In (99),

a1

\. • "•
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R ), +(z'-z + 4pp sln 2(.! (100)
p p p ~ 2'K (0)

where
(nt)

A x•, sin vP' Pq + '" 2 q(101a)

q 2

(nt)
-' IZq + x A cosz (lOvb)

q 2

, DO loop 35 accumulates HI(ýK H24K), H3(ýK U., and Gb in HIA, H2A,

H3A, H4A, and H5A, respectively. DO loop 37 accumulates the sum on

IV V in (44) for a = 1, 2, and 3 in HIA, H2A, and H3A, respectively. DO

loop 37 accumulates Gl and Gb of (79)-(80) of [1] in H4A and H5A,

respectively. If kR < .5 where R is given by (100), then lines 154-159

use (89) and

'I _____ 1 k) 2  4__2_ kB.)4 + k)6
e - +___ (kR) - + (kR) + +-(kR)

kR 4+ 720 6 120 (102)

in order to put

•i ~(nt
(C- 1 (GAZT (G R3 •• in HIB (103a)

(kR)3 k

and(
(n -jkR)

AZT, ( ) in H4B (103b)

If kR > .5, lines 161-165 calculate HTB and H4B directly from (103).

Lines 173-199 put I of (47) for a = 1,2, and 3 in Wl, W2, and W3,

respectively. Lines 173-199 also put G and G of (87)-(88) of [1]
a2 b2

in W4 and W5, respectively. I, I, and G are even in t . I, and
1 3 a2 o0

Gb2 are odd in t . I, I G and G are calculated with t
Gb2 r I 3 a2' b2

replaced by ItoI and then the signs of I and G are changed if t iso b20
negative. Line 173 puts kt in Al.0

[ii

4 ' 4~
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2-5 2 2 -52In line 182, d is compared to 10 r . If d < 10- r, then
little confidence can be placed in the calculated value of d 2 because

"pq2 2
,r and t are very close to each other in (46b). If

-pq p

re d2 O-5r2
d• < 1

- pq

It < to A

then statement 52 stops execution because an accurate value of I can

not be obtained. However, if
2<05 I

• d2 <l-5r2
d r

then accurate calculation of Il may be possible. If it - - A is
2 q

appreciably greater than d2, then the approximation (90) can be in-

voked. Line 184 puts the right-hand side of (90) in W4. Lines 187-190

calculate the logarithm term in (47a) according to (91). This logarithm

is stored in W.

Nested DO loops 45 and 46 calculate (50) for n Ml + M-1 where

M is the index of DO loop 45. The index K of DO loop 46 obtains k in

(50). Nested DO loops 45 and 46 also calculate (91)-(93) of [1] and (91)-(93)
of [1] with a replaced by b. The results of these calculations are

stored according to (97) and (98). With regard to (68a), lines 271-279

put
(n~)-

____ n. 2p i2pir 2

k3 2 log + (+--i- j
-q 2VV+ -2pq

Pq

in D8. Line 280 puts in D9 the term which is present in G in case 4
5a

but not present in case 2. Replacement of the second sum with respect

"i -
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to V in (97) of [1] by the exact value of the corresponding integral

with respect to t' and use of (99) of [1) give

£i (n) t (nt -JkRp, •

G1 A, cos p£cos(nc£) ý AT e + D9 (104)•,G5a 2i I £'= k~£, 1- +D 14

where

n2(nT)r + q (_ )2.+ 2 gLq1

SD9 = k7 ~(n)AA 1 2 Fjj
4 + + og A ) + 1 2p ) +o

D9P2* kwp AA kApý 1(

1 ) qlg+ (L) + (105)
q q Lq

Line 280 puts the right-hand side of (105) in D9. DO loop 67 adds D8

11to GI and D9 to G5a' DO loop 67 also sets G2 1 , G2 2 , G2 3 , and G3 1 equal to

zero. These four G's are set equal to zero when p=q because the exact

values of the coefficients by which they are multiplied in (24) are zero

then.

The index L of DO loop 13 obtains £' in (35) and in (62)-(63) of
(1]. With regard to (36), DO loop 17 puts G(u, K ) in GA(K). With regard

-JkR PV
to (64)-(66) of [1], DO loop 17 puts (e-)/(kRp,, ) in GD(K). If

(59) is not true, line 318 sends execution to statement 51. Lines 319-340

calculate the tena1s in (57) which do not involve G(u,ý) and the terms in
(-JkRp')

(94) of [1] which do not involve (e/(kR DO loop 62 accumu-

lates (n•) 2

in D6,
Z=i k a3

n4 (n,) 1 1 _P__

Aa + aa+ 3 ) in D7,

and

...................................... ...... :2..: .. ". .
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in D9.

Line 337 puts the coefficient of n in (57c) in D8. Line 338 puts the

portion of (57a) which does not involve G(u,s ) in D6. Line 339 puts

in D7 the portion of (57b) which involves neither G(u,4 ) nor (n + 1).

Line 340 puts in D9 the terms in (94) of [1] which do not involve
-jk

(e /(kR DO loop 32 accumulates G1, G2 , and G of (36) in

lHIA, H2A, and H3A, respectively. DO loop 32 also accumulates G4, G5 , and

G6 of (64)-(66) of [1] in H4A, H5A, and H6A, respectively. The index M1

of outer DO loop 30 obtains n = M + M1-1. If (59) is true, lines 368-370

add to HliA, H2A, and M3A the terms in (57) which are not present in (36)

and line 371 adds to H5A the terms in (94) of [1] which are not present

in (65) of [1]. Lines 372-380 do the sums with respect to V' in (35).

Lines 381-386 do the sums with respect to V' in (62)-(63) of [1].

Lines 389-509 use the previously calculated G's of (97) and (98)

to obtain the contributions (23) and (24) to the elements of the moment

matrices Y and the contributions (48)-(51) of [11 to the moment matricesn .

Z . The index M of DO loop 31 obtains n = M + MI-i. Lines 437-438 puti? n

G7a and G7b of (54)-(55) of [1i in H4A and H4B, respectively. The sub-

scripts KI, K2,... K8 defined in lines 452-459 have the same meaning as

in Table 2 on page 50 of [1]. The variables UA, UG, UB, UH, and UF

incremented for p=q in lines 425-429 are intended for Y(Kl), Y(K2), Y(K3),

Y(K4). and Y(K9), respectively. Y(K9) is reserved for (Y of (24d).

J

t'
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001 LISTING OF THE SUBROUTINE YZ

002 THE SUBROUTINE YZ CALLS THE FUNCTION SLOG
303 SUeROUTINE YZCMl.N2.NP.NDHI.NT,!NRHZH*XA.XTATYPZ)
004 COMPLEX YC 1zO0) ,Z~t600),uU1.~tU2,U3.U4,U5,U6.H1A.H2A.H3A.GA(48)

005 COMPLEX GB(48).GC(48),GD(48),PGE(481.HIB.H2B.H38.HICH2CH3C.H4A
006 COMPLEX H5AH6AH4BH58.H68.uA.U8.UCUDUEitjFGlAf10).G2A(t0)
007 COMPLEX G3A(LO).G1B(l0)vG2EI10).G3B(10),G1C(1OVG2C( 10)*G3C( 10)
008 COMPLEX G4A( 0) *GSA( tO) 9G6A(10).G48(10) G55(tO)9G6SC10)9CMPLX
009 COMPLEX UG.UH
0 10 DIMENSION RH(43) ,ZH143).X(48),A(48),XT(tO),AT(tO),RS(42),ZS(42)
Ott DIMENSION D(42),DR(42h*DZ(42),O.M(42)PC1( 48),C2(48).C3(48).C4C200)
012 DIMENSION CS(200),C6(200).R2(tO).Za(tO)hR7(10).Z7(t0)
013 CT=2*
0 14 CP=.t
0115 DO 10 1=2,NF

017 2-

08 ZS( t2)=. 5* (ZH (I )+ZH( M2)
019 DI =.S*(Rtj( I)-RH( M2))
020 D2=.5* ( ZH II)-Zl( (2) )
D21 WI 12)=SORT (01*D 1+02*02)
022 DR(U2)=Ol
023 DZ( 12);-02
024 DM( 12)=D (I2)/RScr2M
025 10 CONTtNUE
026 M3=m2-Mt+t
027 M4=Mt-I
128 P12=1.570796
029 PP=9sa6,9E04
030 DO It K~tvNF-Ht
031 PHI=P12*(X(K)+-~

032 CI(K)=PH
0,33 C2(K)=PH*PH
334 SN=SINUS5*PH)
035 C3(K )=4. *SN*SN
-136 A1=PI2*A(K)
037 D4=#5*At*C3(K)
D38 05ýAt*COS(pm)
039 D6= I P
040 M5=K
041 00 29 M=toM3
342 PHM=(M4+M)*PH
043 A2=COS(PHM)

044 C4(MS)=D4*A2
045 C5(M5)=D5*A2
0146 C6 (MS)=C6*S IN(PHM)
047 MS=M54NPHt
048 29 CONTINUE
049 tt CONTINUE
050 PNI=.7853982*TN
051 PN2=e**PNI
052 U oo
053 Ut=.5*U

054 U2--a .*U
0 55 MP=NP-1
056 MT=MP-1
057 N=MT+MP
058 N2N=MT*N
059 N2=N*N
060 JN=-l-N
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61 Do i5 J0=1,mpI

063 IF(JO.EO.1) K0=1.
064 (F(JO.EQ.M!P) KO=3
065 R%-R S( JO)

066 2ZIZSfJO)
067 Dt=D(JO)
068 02=DIR(Jo)
069 D3=DZ(JO1
0 70 D4=D2/Rl
D71 05=01/Rt

072 SV=D2/Di
073 CV=O3/Dt
074 Pt=PNL*Dt
075 P2=PN2*05
076 P3=2.*01

077 P4=2.*04
078 P5=D4*D4
079 P6=01*D1

080 P7=P35*D
081 T6=CT*Dt
082 T62=T6+Dt
083 T 62= T62 *T62
084 R6=CP*RJ.
Des R62=P6*R6

086 PtA=O.
087 Pte20.

088 PIC=O.
D89 00 t2 L=1,NT

090 0!6=XT(L)

091 P2 (L) Rl 402*06
092 Z2(L)=ZI+D3*D6
093 D7=P1*AT(L)/R2(L)
094 D8=1 ,-6
095 09D08*D7

096 PI=P LA+08*09
097 06=1.+06
098 P t B=0 tB+06*D9
099 PIC=PIC+C6*06*D7
1 00 12 CONTINUE
t0t 00 16 (P=1,MP
102 P3=RS(!P)
t03 Z3=ZS(IP)

104 R4=RI-R3

105 Z4=Z 1-Z3i
106 U3=D2*Ut

107 U4'=D3*UI
108 00 40 L=INl
109 D7=R2(L)-R3
It0 D8=Z21L)-Z3

I1it R7(L)=R3*R2(L)
1 1 2 Z7(LV0D7*07+DS*08
t13 40 CONTINUE

11t4 PH=R4*SV+Z4*CV
1 15 A=ABS1P14)
11t6 A2=ABS(R**CV-Z4*SV)

1 17 06=A2
1 18 I1F(AteLE.01) GO TO 26
1 19 06=At-DI
1 20 D6=SQRT(06*D6+A2*A2)
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121 26 tFUtP.NE.*JO.AND.(FZ6.GT.D6.OR.T6.LE.D6)) GO TO 41
t 22 ZS=R4*R4+Z4*Z4
123 R5=R3*Rl
t24 PH M=.5* R3* SV
125 DO 33 K=1.NPHt
t26 A1=C3(K)
t27 RR=Z5+R5*AI
t28 HtA=Oo

129 1H2A=O*
130 H3A=O.
1 31 H4A0.s
132 HSA=O.

t33 tF(PR.LToT62) GO TO 34
134 DC 35 L=1,NT
135 W=Z7(L)+R7(L)*At
136 R=SORT(W)
137 SN=-StN(R)

138 C S=C OS(R)
1 39 06=AT(L)/R
t40 H18=06/W*Cp4PLX(CS-R*SN*SN+R*CS)
141 HtA=HIB+HtA
142 H2 E=XT(L )*Ht B
143 H2A=H28+H2Ar
144 H3A=XTCL)*1i28+H3A
145 H48=D6*CMPLX(CS*SN)

t46 H4A=H48+t14Ap
t47 HC-A=XT( L)*t14B+H5A
148 ?5 CONTINUE
149 GO TO 36
150 34 DO 37 L=1.NT

151 W=Z7CL)+R7(L)*At
1 52 R=SORT(W)

153 IF(R.GT..S) GO TO 14
154 CS=R*CW*(.6944444E-2-W*.1736111E-31-.t2S)

155 SN=W*( .3:333333E-1-W*. 1190476E-2)-.3333333
156 Ht O=AT(L )*CMPLX (CSSN)
157 CS=R*(W*(.4166667E-t-.1388889E-2*W)-.5)
158 SN=W*(W*(.1984126E-3*W-.8333333E-2)+.1666667)-t.

159 H4S=AT(L)*CMPLX(CStSN)
160 GO TO 43
161t 14 SN=-SINCR)

162 CS=COS(R)
t163 D6=AT(Lý/R
164 H18=DG*((CMPLX(CS-R*SN,$N+R*CS)-t.)/W-.*3)
165 H4 R-D6*CMPLX (CS- I ooSN)
166 43 HtA=H-tB4-HtA

167 H26=XT(L)*HIB
1 68 H2A=H2B+H2A

169 H3A=)(T(L )*1H2S+H3A
t170 H4A=H4B+H4A

1~~1 5A=XT(L )*H48+H5A
172 37 CONTMNE

173j At=PH+PHM*At

t74 A2=AFJS(At)
17S R=RR-A2*A2
1 76 O6=A2-Dt
1 77 D7=A2+Ot
1 78 062=D6*06
179 D72=07*D7

180 08=SORT(062*R)
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Tat D9S CRT (072+R)
182 tF(R-(RR*t*.E-51) 52,52f,53
183 52 t1F(D6.LT*0.) STOP
184 WI4=*S/D62-.5/D72
185 GO TO 54
186 53 W4=(D7/O9-D6/DB)/P
187 E4 IF(D6sGE.,0.) GO TO 38
188 W=ALOG( CO7+09)*(-D6.08)/R)

189 GO TO 39
190 38 W=At0G((D7+D9)/(D64O8))
19l -j9 Wl=(W4-l.5*W)/D(
192 W5=A2/Dt
193 W2=( .*(09-DS)-1./09+1./D8)/P6-W5*WI
194 W3=(.25*(O)7*D9-D6*DS)+W-R*(W4+.25*W))/P7-W5*(2.*W2+WS*Wt)t9 4WD
196 W5=(D9-D8-A2*w)/ft6
19? IF(AI#GE&Oo) GO TO 27
198 W2=-W2

201 H2A=W2+H2A
202 H3A=W3+H3A

203 IH4A=k~4+M4A

205 36GA(K)=tH1Af:206 GS(K)=H2A
207 GC(K)=H3A
208 GD(K)=H4A
209 GE(K)=H-SA
210 33 CONTMEJ1

212 0O 45 M=t*M3
213 HIA=0.

214 h'2A=0.
215 H3A=O.

218 h313=0

2-20 H2c~o .
221 H3C=G.
222 l'4 Am0,
?23 H5A0O.
224 H6A=0.
225 H-48=0.

I'228 D0 46 K~tNPH(

23t D7=CS(K11 I
232 08=C6(KI
233 UA=G.G(K)
234 UE,=GB(K)
235 UC=GC(K)

236 UO=GiD(K)
237 UE=GE(KI

238 H IA=OL6*UA+H LA
239 H 2 A =C 7 *A+ H 2A
240 H3A=De*UA+H3A

A '
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24t HIB=DB*UB+H1B

242 He-7U+2
243 H38=D8*UB+H38
244 HtC=06*VC+HIC
245 H2C=07*UC+H2C
246 H3C=De*UC+H3C

247 H4A=06*UD+H4A
248 H5A=07*UD+HSA
249 H6A08*1JO+H6A

250 H48=06*UE+H4B
251 HSS=07*UE+t158
252 H68=DS*UE+H6B
253- 46 CONTINUJE

254 GtACM)=HIA

255 G2A(M)=H2A
256 G3A(.M)=H3A
257 GIe(M)=HIB
258 G2B(M)=H23
259 G30!(M)=H38
? 60 G1C(M )=HIC

261 G2C(M)=H2C
262 G3C(M)=H3C
263 C-4A(M)=IH4A
264 G5A(M)=HSA
265 G6A(M)=H6A

266. 648(M)=H4B
267 G58(M)=HSB
268 G6B(M)=H68
269 45 CONTINUE
? 70 IF(IP*KE*JQ) GO TO 47
271 A1=DS*D5
272 D8=0.
273 D9=0
274 DO 63 K=1*NPHt
275 08=08+A(K )/SORT(C2(K)+At)
276 Dg=D9+A(K)*ELOG(05/CtCK))
277 6.3 CONTINUE

278 A2=3.14t593/05
279 D8=(BLOG(A2)-P[2*D)81/(R5*Pt)
280 D9=2./Rt*(8iLOG(:A2),A2*BLOG(1 ./A2 )-3 st4t59'3/01*09
28t 00 67 M=t*t43
282 G IA(M) =D e4G IA (M)
283 G2A(M)=O.
284 G2eVJ)=Oo
285 G2C(M )=0 .

z286 G3A(1M)=.
P87 G5A(M)=D5*+G5A(M J
288 67 CONTINUE

2819 GO TO 47
1290 4t DO 25 M=1,M3
291 GIA(M)=O.
292 G2 A(M) =0.
293 G3A(M)=Oo
294 GtE(M)=0.

295 G2B(14)0.
296 G3eCm)=0.
297 GIC(M)=O.

298 G2 C(M I =0.
2199 G3C(4)=Oo

300 G4A(M)=0.

AM-
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301 G5A(M )=6.
302 G6A(4)=0 .
3 0 3 G48( M)0.
304 G5eCm)=o
305 GE6B(M )=O.

306 25 CONTINUE ~
307 D)O 13 L~toNT
308 P<5=P7(L)
309 Z5=Z7(L)

310 00 t7 K~t*NPHI

311 w=ZS+R5*C3( K)
312 R=SORT(W)
313 SN=-SIN(R)

315 GA(K )=CMPLX(CS-R*SNSN+R*CS)/(W*R)
316 C- D(K)=C M LX (CS 9S N R
317 t7 CCNTINUE
318 rF(R62.LE.ZS) GO To 51
319 D6=0.
320 07=0.
321 D9=0.
322 DO 62 K= toNPHt
323 W2=c2(K)
324 W=1./(ZS+Rs*w2) Ai
325 Wit=A(K)*SORT(W)
326 DF-=D6+W t*W2*WAl

327 D7D4W*.+*t+t5WR*2W)
328 D9=Dg4W1

329 62 CONTINUE
330 Wl=RS/Z5
331 W2=PP*Wt
332 W=SQRT(W2)

333 %3=1.+W?
334 R=SORT(W3)
335 %14=SCRT(I95)
336 W5=ALOG(W+R)

337 08 =- Pt 2 *C6 W~/ R -W5)Ri5 W 4
338 D=5D
339 D7=((W/R*(W1-(.125+.1656667*W2)/W3)4.125*W5)/R5+.5*W5)/W4-PE2D7
340 09=W5/W4-Pt2*D9
341 51 A1=AT(L)

A,342 A2=XT(L)*AA1
343 A3=XTG..)*A2

345 00 3 M=tSM3

'446 W=M+M4
34? Ht A=0

~48 H2A=0.
349 H3 A= .
350 IH4A=0.

351 Hb A=0
752 H46A=O.

353 DO 32 K=1,NPHE

355 HIB=GA(K)
356 W4=C4(Kl)

157 WI5=C5(Kt)

156 W6=C6(KI)
759 Ht A=W4*H tE+H IA
360 H2A=W5*HlE3+H2A
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36t M3A=W6*?418.H3A
362 H418=GD(K)

363 H4 A=W4 *W, B-H4A
364 H5A=W5*HtB+H5A
36.5 H6A=46*HlB:H6A 4
366 32 CONTENtJE

368 H IA=D6+HI A
369 H2 A= 7-(W*W+l.)*:0+Hý.A

370 IH3A=W*D8+H3A
37t HSA0D9+H5A
372 44 GlA(M)=At*HtA-GtA(M)
373 G2A(4)=A1*H2A4G2A(W)
374 G3A( M)=A i*H3A+G3 A(M)
375 GlB(.M )A2*H1 P+GZ3(M)
376 G2B( M)=A2*H2A*G28 (M)
377 G3Bf0A )-=A2*H3A+G39(M)
378 GIC( M)=A3*H t AtGl C(M)

379 G2C( M)=A~t*H2A+G2C(M)
380 G3C ( W) =A3*H3A+G3C (M)
381 G4UýM)=At*F:4A+G4A(P4)

383 G6A(M )=A t*Hf-A+G6A(M)
384 G4B(MP)=A2*H4A+G413(M) K
385 G5e (M)=A2*WýA+G56NU

386 G68CM)=A2*H6A+G6eNi I
388 13 CONTINUE
389 4? A2=DUP)
390 A3*2
391 W t A 3*R 4*D 3-Z 4*D 2)
39? lm2=-A3*P3*03
393 A3=DZUP)

395 07=Z4*D6
394 Dg=D3(tP1

37 HtC=(Pt*Dg.-D2*(R3*A3+D7fl*t.J
6L390 08=A2*Dt

3q9 H3C=D6*U

400 H12 C=Z4 * HC

401 H3C=D3*H3C

4f)4 W5=P7:*R t*A3

405 At=0R(IP)
406 U5=A t*U3
40 7 U6=P''*U4
408 06=--02*A2
409 07=D[*A1
410 A 3=0 W IP)
411 JM=JN

4t2 DO 31 M1,*M3
413 H2A=G2A(M)

4t4 HtA=GIA(M)
415 ?428=G28(M)
416 HIB=GIB(M)
4t7 UC=WL*H2A+W2*-I1A
418 JB =W I*Fi213 W 2*H 18I: ~ 419 UF=W3*( r2A+D4*H28 )+W4*( HB-t4*G2C( 41) )W5*(H 1A4P4*H1B+P5* 61CCM))

421A=CU
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421 Uf=UC+1Jo

422 UG=UA
423 UH=UB
424 IF(IP*NE*JC) GO TO 48
425 UA=PIA&-UA
426 UG=PtB4UG
427 UB=P18+ue
428 UH=PtC4-UH
429 UF=P?+LiF

430 48 H3A=G3A (M)
431 H36= G3B (M)
432 UC =H IC*H3A

433 UD=t-LC*H3B
434 UE=H 2C*~-(H3 A*O4*HM8)+H3C* (H38 +D4 G3C (M))
435 H5A=GSA (M)
t36 H5B=GSB( K)
437 HAA=G4A(M)+IH5A
438 H48=G4B ( I) +H5
439 H6A=G6A(M)
440 H6E=GF;S IA)
441 H3A=U5*H-5A+U6*H4A
442 Hl8=U5*HS8+U6*H48
443 HtA=H3A-HIB
444 H2A=H3A+til 8
445 H3A=-UI,*4A
446 HIB=06*IH6A
447 w~t4+m4 481 Z( K7) =Z( IM)+H383-H4A
44e A1=W*A3 482 [F(tP.EO.-MP) GO TO 22
449 H2B=D6*H68-A t*H4A 483 23 Y( K2)V=(1<2) +UG
450 H13B=C7*(H6A+O4*H6B) 484 Y(IK8)=UE
451 Ib4A=W*DS*H4A 485 Z(K<2)=Z(K2)+HIA-H3A
452 KI=10+JM 486 Z(K8)=M:3e+e4A
453 K2=Kl+l 487 GO TO 22
454 K3=Kt+N 488 20 Y(K5)=Y(K5)+UC-UO
455 K4=K2*N 489 Y(K6V=UC+Uo
456 K5=K2+14T 490 Z(K5)=Z(K5)+HtB8-28
457 K6=:(4+MT 491 Zt K6) =Ht e-H2 8
458 K7=K3+N2N 492 IF( IP.EO . t) GO TO 24
459 (8.=Kki-N2N 493 Y (K ) =Y(Kt )4UA
460 K9=K8-N4T 494 Y( K3)=v CK3) +UB
461 GO TO f 18 *20,p19) 1KQ 495 Y(K7)=Y(KT)+UE
462 18 Y(MK )=UC+U0 496 Z(Kl)=7%'Kt)+HtA+H3A
463 Z ( Kf)=H1I5I+H28 497 Z(K3)=Z(K3)+t-2A-H3A
464 tF(1P.EO.1) GO TC 21 498 Z(K7)=Z(K7)+H38-H4A
465 Y(K:)=Y(K3)+UB 499 IF(IP.EO.MP) GO TO 22
466 Y (K-P IY(W7) -VE 500 24 Y( K2)=Y( K2)+LJG
467 Z(K3)=Z(K3)t+H2A-H3A 501 Y(K4)=VH
468 Z(K7)=Z(K7)+H38-H4A !;02 Y(K8)=UE
469 rp((tP*EO.MP) GO TC 22 503 Z(K2)=Z!(K2)+HIA-H3A
470 21 Y(K4)=UH 504 Z'(K4)=H2AH3A
47t YCKB)=UE 505 Z(K8)=H3B+H4A
472 Z(K4)=H2A+H3A 506 22 Y(K9)=UF

4-73 Z (KS) =H3 S+t4A 507 Z(K9)=U2*(D8*CH5A4D4*HSB)-A1*H4A,
474 GO TO 22 5OS JNI=JM4N2
475 19 Y('5)=y(K5)+UC-V4D 509 31 CONTINUE
476 Z{K5)=Z(K5)+~H1B-H2B 510 16 CONTINUE
477 IF(IP*EQ.1) GO TO 23 511 JN=JN*N
478 Y(Kt)=Y(Kt)+UA 512 IS CONTINUE
479 Y(K?)=Y(K7)+UE 513 RETURN
480 Z( K I)=ZIK t)+HtA4-H3A 5t4 END
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VIII. THE MAIN PROGRAM FOR BOTH THE H-FIELD AND E-FIELD SOLUTIONS

The main program for both the H-field and E-field solutions

obtains the present H-field solution and the E-field solution of [11

for the electric current on a conducting body of revolution immersed

in an incident plane wave. Input data are read from punched cards.

These input data are the same as those for the main program for the

H-field solution which is described and listed in Section VI of

Part Two.

The main program for both the H-field and E-field solutions

calls the subroutines YZ, PLANE, DECOMP, and SOLVE. The function

subprogram BLOG is also needed because it is called by the sub-

routine YZ

Minimum allocations are given by

COMPLEX Y(N*N), Z(N*N), RE(2*N), R(2*N), B(N), C(N)
DIMENSION XT(NT), AT(NT), X(NPHI), A(NPHI), RH(NP),

ZH(NP), IPS(N), IPT(N)

where

N = 2*NP-3

The t and t components of the present H--field solution for the

electric current are calculated from (84) and (85). The t and c com-

ponents of the E-field solution of [11 for the electric current are

also calculated from (84) and (85). In the present H-field solution,

the coefficients It and I in these equations are the pth elements of
I

÷t p l• p

the vectors I and which satisfy the n=l equation in (10). In

the E-field solution of [l], these coefficients are the elements of the
vectors I and which satisfy the n-l equation in (6) of [i]. DO loop

28 prepares RH and ZH for use in the subroutines YZ and PLANE by multi-
plying them by k. With regard to (10), line 42 puts Y1 of (86) in Y.

With regard to (6) of [11, line 42 puts Z of (96) in Z. Line 45 calcu-

lates IPS and changes Y. Line 46 calculates IPT and changes Z. With
r1it and-I for the4Sregard to (10), line 47 puts the excitation vectors and fo the

. • " I I

i -

i 'r I
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polarized incident plane wave (69) in RE. With regard to (6) of [1],

line 47 puts the vectors V and -V for the 0 polarized incident plane
wave i-R. Line 47 also stores vectors for the ý polarized incident plane

wave (70) further on in RE and R but these vectors are not used in the

main program.

In DO loop 36, JHE =1 obtains the present H-field solution for

the electric current and JHE = 2 obtains the E-field solution of [11

for the electric current. In line 55, the output IPS and Y from the A

subroutine DECOMP is fed along with N and RE into the subroutine SOLVE.-* t 7÷ -t

"SOLVE puts the solution Il and I to (10) in C. Lines 59-64 put V1

and V1 in B. In line 67, the output IPT and Z from the subroutine DECOMP

is fed along with N and B into the subroutine SOLVE. SOLVE puts the

solution 1I and I to (6) of [1] in C. The t and ý components of the

normalized electric current are printed out under the headings JT and JP,

respectively. The normalization is the same as in the main program for

K the H-field solution which is described in Section VI of Part Two. The

sample input and output data are for the sphere examples of Figs. 2

and 4.

14
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001c LISTING OF THE MAIN PROGRAM FOR~ BOTH THE H-FIELD AND E-FtS-.D SOLUTIONS
002C THE SUBPROGRAMS YZ98LOG9 PLANE*,DECOMP, AND SOLVE ARE NEEDED

003//PGNM JOB (XXX(),XXXX*It.).'MAUTZJOE',HEG!ON=20OK
004//' EXEC WiATF[V

(lO5//GO*SYSiN D00
006S JCB MAUTZ9T 1ME=!5*PAGES=60

D 07 COMPLEX Y(1600)tZ(t6OO),PRE(240)#R(240)9B(40),C(40)oUCt
008 DIMENSION XT(LO ),PAT( 0).X(48)oA( 48),RH( 43)#ZH(43) THR(3) tIPSC40)
009 DIMENSION IPT(40)
010 READ(1915) NTNPHt
Ott 15 FORMAT(2t3)

012 WRITE(3930) NTvNPHt
013 30 FOPMAT(I NT NPHI'/IX913st5)
014 PEAD(t.10)(XT(K)vK=lsNT)

015 READ(tvt0)IAT(K),pK=lsNT)
016 t0 FOPM AT (5 E 14o7)
017 WRtTE(3stt)(XT(K)oK=tsNT)
018 W P.ITE (3 t2) (AT (K ) oK=t NT)
019 I1I FORMAT(l XT#/C1Xv5Et4i7))

020 12 FORMAT(' AT#/(lX#SEt4.7))

021 READ( to10) (X(K) *K=l 9KPHI)
022 READ( t,1O)(A(K) ,K= ,NPHI)
023 WRITE(3s13)(X(K)*K=lpNPHI)

024 WPITE(39 L4)(A(K)*K1,#NPH0)
025 13 FORMAT(' Xf/(lXv5E14*7))
026 14 FORMAT(I A'/(lX95E14*7))
027 READ(1.,16) NRBK9THRMt
028 16 FORMAT(1392EI4.7)
029 WR1TE(3,17 NP#BKoTHR(1)

K030 17 FOPMAT(* NP',6X,'BK',1t2X,I'THR*/tX~t3,2E14.7)
D 31 rEaO(t1 1 ) ( PH( y) * t~1 NP)
032 READ(tot8)(ZH(I)9I=t#NP`)
333 18 FORMAT(10FS*4)

0 36 19 FORMAT(l RHO/(tXsI10Pe.4))
037 20 FOPMAT(f ZHI/(IX*10F8*4))
038 DO 28 J=t.NP
039 RH(jl)8K*RH(J)

040 ZHfJ)=BK*ZH-(J)
141 28 CONTINUE

t142 CALL YZ(1,1.NPNPHENT9 IRH.ZHXA.XTATV.Z)

043 MT=NP-2
044 N= 2*MT+ I
045 CALL CECOMP(NvIPS*Y)

046 CALL DECOMP(N*IPT.Z)
047 CALL PLANE( to1.1.NP* 39NTvRHo ZHXT, AT.THR*RE*R)

049 00 36 JHEI.s2H0501 GO TO (32934)*JHE
051 33 WRtTE(3929)(Y(J)sJ=1.N)
052 29 FORMAT(' Y'/CIXo6EtI,4))
053 W RIT E(3 s3S5) I RE (J),J = hN)
054 35 FOTRMAT(' Rf/(tX96El1.4))
055 CALL SOLV4E(N.IPS*YiRE*C)
056 GO TO 32
057 34 WPITE(3v3l1(ZCJ)sJ1,#N)
058 31 FORMAT(' Zl/(IX*GEtt*4)1

059 DO 22 J=t*MT

M060 B(J):R(j)
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061 JitJ+MT
062 B( Jt) -R(jit)
063 22 CONTINUE

f) 66, 8 1N)=-R (N)
065 WR ITE p2(3 2) ((J).Jýt N I
066 23 FORMAT(, E'/(lXp6Ell#4j)
067 CALL S3LVE(N.IPTZ*8*C)
D68 32 WRITE(3921)
969 21L FOSM AT( REAL. JT fMAG JT NAG JT#)
070 D0 24 J1,*MT
07t C1 =2 ./RHWJ+ I) *C:(J)I
072 C2=CABS(Cl)
073 WRITE(3,2S) Ct*C2
0 74 25 FCPMAT(lX*3E11.4)
075 24 CONTINUE
176 WRITE(3926)

077 26 FORMAT(' REAL JP (NAG JP MAG JPI)

079 00' 27 J= toMP
f)80 C t 4.'RH ( J +RH (J+1 I)*U* C(J+MT)
081 C2=CAeS(CI)
08-2 WRITE(3*25) Ct.CZ
083 27 CONT fNJE
084 3ý6 CONTINUE
085 STOP
086 ENO

S DATA
2 20

-0.5773503E+00 0 .!57735032+00

r 0.1000000 2+01 0.1.000000E+01

-0.993t286E+00-'3.9639719;E+O0-0.9122344E.00-0.8391170E+00--0..746Z339E+00
-0.636053724'00-0.5108670E+00-0.3737061E+00-0.2277859E4.0q-0.7652652E-01
0.7652(?522-Ot 0*2277859E+00 0.37370612+00 0.51086702+00 0.6360537E+00
0#74633tgE+00 0 .8391 170E2+00 0 .91t223442+00 0 .9639719E+00 009931286E+00
0*17614CI2-0t 0.4060t43E-01 0.62672052-01 0.83276742-01 0.10193otE+002
0.1t1t8 t9452E+00 0.13168862+00 0.*14209612+00 0.*14917302+00 0915?753*E+00
0.15215342+00 0.14917302+00 0.t4a*,96tE+00 :0.1316886E+00 D.1181945tý4O0
0 .101 93012E+00 0.#83276742-01 0 .62672052-01 0,4060 1432-01 0, 1761421E-01l
16 0.12566372401 0.3t4t593E+01
0.0000 0.2079 0.4067 0.5878 0.7431 0.8660 0.9511 0,9945 0.9945 0.9511
0.8660 0.7431 0,5878 0.4067 0.2079 0.0000

-1t.0000 -0.978t -0.9135 -0.8090 -0.669t '-0.5000 -0.30'90 -0.1045 0.1045 0.3090
0.5000 0.66S1 0.8090 0.9135 0.9871 1.0000

S STOP

PRINTED OUTPUT CONSISTS OF THAT FROM THE MAIN PROGRAM FOR THE
N-FIELD SOLUTION IN SECTION Vt OF PART TWO PLUS THE FOLLOWING LtNES.

0.67332-01-0.11082+02 0.62052-01 0.3162F+0t 0.5399E-01 0.83942400
0.44 15E-01 0*2tt2E+00 0.3365E-0i 0*1593E+0) 0.234SE-01 0.9534E-01 *
0.140742-0 0.17072-01 0.4062t-01 0.1339E-01 0.39242-01 0.10642-01

-0.39962-01 0s27532z0396-01-*S8E0 0.76960E-0l2 #53+2065E0
0*75B1066EO #73+00*42-t016E-0051EO
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0#.2754E+00-0# 7539E+00-0*3t20E+O0-0.68tt E+00-0 93507E+00-0*5623E+00
-0.3645E+00--0 4085E+00-0.3286E+00-O.243:3E+00-0.2313E+00-0. 10122+00
-0,83SIE-0 I-0. 18402-01 .o835t E-01-0. t840 E-0 1 0 #231 3E+00-0 *t012E400
0*3286E+00--0&2433E+00 0.3R645E+0O-0*40f!5E+00 0#3507E+00-0.5623E+00
0*3t06E+00-0.68t7E+00 0.2697E+00-0*7559E+00 0*78012+00-0*2694E+00
0.7641E+00-0.:3i11E+00 0*7268E+O0C-0*3900E+00 0*6583E+00-0*4958E+00
O.550SEý00-0.61L28E+00 0#3995E+0O-0*7201E+00 0.2107E+00-0,79562+00

- 0.0000E+00-0.8227E+00-0.2107E+00-0.7956E+00-0 .3995E+00-0.7201E+00
-0.5505E+00-0.6t28E+00--0.65e32+00-0.4958E+00-0.72682:+00-O.3900E+00
- 0.7764E+00-0.3116E+00-0.7793E+00-0.2626E+00

REAL JT IMAG JT MAG JT
-0.8238E+00-O.1971E+O1 0.21372-+01
0 *9777E+00-0 # 907E+01t 0.2t432+01

-0.1186E+01-0*1802E+01 0.2158E401
-0.*142 tE+0 t-0 # 620E+O I 0*2t54E+Ot
-0. 1629E+01-091337E+01 0.21082+01
-0 * 75tE+01t-0 995*f-E+00 0. 19542+01
-O.1733E+01-0#5013E+00 0.18042+01
-0 s 545E+.01-0.*284:3E-01 0.1o5452+01
-0. 1196E+01 094045E+00 0ol263E+01
-0.7315E+00 0.*74922E+00 0.10472+01
-0*2198E+00 0#9839E+00 0.1008E+01
0#265:!E+00 0#1116E+Ot 0.11472+01
0*6631E+00 0.11822+01 0.1355E+01
099285E+00 0.1196E+01 0.15t4E+Ot

PEAL JP IMAC JP MAG JP
0.79972+00 0.1970E+01 0.2126E+01
0.94274E+00 0 -18332+01t 0.20542+01
091071E+01 0.16452+01 0.19632*01
0.1221E+01 0.*1t362E+01 091829F+01
0.13122+01 0.1014E+01 0.16582+01
0.12972+01 0 .657 t2+0 0 0.14542+01
0.1166E+01 0*3656E+00 0.12222+01
0.956tE+00 0,205824-00 0.9780E+00
007409E+00 092063E+00 0.76912+00
0.5921E+00 093454E+00 0.68552+00
0.SEE8E+00 0.56352+00 0.788(%2+00
0.61202+00 0.79242+00 0.10012+01
0*7237E+00 0.96942+00 0.12102+01
098687E+00 0 * t13E+01I 0.14122+01
0.9847E+00 0.11942+01 0.15472+01
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